L(s) = 1 | + (0.327 − 0.945i)2-s + (0.458 + 0.888i)3-s + (−0.786 − 0.618i)4-s + (−0.000133 + 1.27e−5i)5-s + (0.989 − 0.142i)6-s + (1.26 + 2.32i)7-s + (−0.841 + 0.540i)8-s + (−0.580 + 0.814i)9-s + (−3.16e−5 + 0.000130i)10-s + (−2.18 + 0.757i)11-s + (0.189 − 0.981i)12-s + (1.48 + 5.06i)13-s + (2.61 − 0.430i)14-s + (−7.26e−5 − 0.000113i)15-s + (0.235 + 0.971i)16-s + (−4.72 − 1.89i)17-s + ⋯ |
L(s) = 1 | + (0.231 − 0.668i)2-s + (0.264 + 0.513i)3-s + (−0.393 − 0.309i)4-s + (−5.98e−5 + 5.71e−6i)5-s + (0.404 − 0.0580i)6-s + (0.476 + 0.879i)7-s + (−0.297 + 0.191i)8-s + (−0.193 + 0.271i)9-s + (−1.00e−5 + 4.12e−5i)10-s + (−0.659 + 0.228i)11-s + (0.0546 − 0.283i)12-s + (0.412 + 1.40i)13-s + (0.697 − 0.114i)14-s + (−1.87e−5 − 2.91e−5i)15-s + (0.0589 + 0.242i)16-s + (−1.14 − 0.458i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(0.353−0.935i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(0.353−0.935i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
0.353−0.935i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), 0.353−0.935i)
|
Particular Values
L(1) |
≈ |
1.23228+0.851538i |
L(21) |
≈ |
1.23228+0.851538i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.327+0.945i)T |
| 3 | 1+(−0.458−0.888i)T |
| 7 | 1+(−1.26−2.32i)T |
| 23 | 1+(−3.59−3.17i)T |
good | 5 | 1+(0.000133−1.27e−5i)T+(4.90−0.946i)T2 |
| 11 | 1+(2.18−0.757i)T+(8.64−6.79i)T2 |
| 13 | 1+(−1.48−5.06i)T+(−10.9+7.02i)T2 |
| 17 | 1+(4.72+1.89i)T+(12.3+11.7i)T2 |
| 19 | 1+(2.45−0.981i)T+(13.7−13.1i)T2 |
| 29 | 1+(0.0478+0.332i)T+(−27.8+8.17i)T2 |
| 31 | 1+(−0.479+0.0228i)T+(30.8−2.94i)T2 |
| 37 | 1+(−7.64−5.44i)T+(12.1+34.9i)T2 |
| 41 | 1+(5.37+2.45i)T+(26.8+30.9i)T2 |
| 43 | 1+(−1.37+2.14i)T+(−17.8−39.1i)T2 |
| 47 | 1+(−1.41+0.817i)T+(23.5−40.7i)T2 |
| 53 | 1+(−7.60−7.97i)T+(−2.52+52.9i)T2 |
| 59 | 1+(0.946+0.229i)T+(52.4+27.0i)T2 |
| 61 | 1+(−5.85−3.01i)T+(35.3+49.6i)T2 |
| 67 | 1+(−0.312−1.62i)T+(−62.2+24.9i)T2 |
| 71 | 1+(−2.20−2.54i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−8.53+10.8i)T+(−17.2−70.9i)T2 |
| 79 | 1+(−1.82+1.90i)T+(−3.75−78.9i)T2 |
| 83 | 1+(2.17+4.75i)T+(−54.3+62.7i)T2 |
| 89 | 1+(0.354−7.43i)T+(−88.5−8.45i)T2 |
| 97 | 1+(7.72−16.9i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20005614045243921523853866821, −9.262701361255510218846968868480, −8.871795200637956005481096747344, −7.909834612471419749976480092387, −6.67163144368746580113856188491, −5.59987376765114131060944016501, −4.72121072130280153922164416357, −3.98215523124711468455405989963, −2.65248536768127760166462667133, −1.86125002293713048936866202005,
0.60960658181908175762143311501, 2.37563692138627286770660352262, 3.63626353582881997852220951337, 4.61584908967294455396204888985, 5.63949366434759152310780688645, 6.53339332081747900768592466921, 7.35697517102502937576929113855, 8.189904031409061150353001319502, 8.527858897796249121780938411663, 9.844826822037738501795296542370