L(s) = 1 | + (0.327 − 0.945i)2-s + (0.458 + 0.888i)3-s + (−0.786 − 0.618i)4-s + (−1.27 + 0.121i)5-s + (0.989 − 0.142i)6-s + (−0.678 + 2.55i)7-s + (−0.841 + 0.540i)8-s + (−0.580 + 0.814i)9-s + (−0.302 + 1.24i)10-s + (−1.09 + 0.380i)11-s + (0.189 − 0.981i)12-s + (−1.87 − 6.37i)13-s + (2.19 + 1.47i)14-s + (−0.693 − 1.07i)15-s + (0.235 + 0.971i)16-s + (0.0653 + 0.0261i)17-s + ⋯ |
L(s) = 1 | + (0.231 − 0.668i)2-s + (0.264 + 0.513i)3-s + (−0.393 − 0.309i)4-s + (−0.571 + 0.0545i)5-s + (0.404 − 0.0580i)6-s + (−0.256 + 0.966i)7-s + (−0.297 + 0.191i)8-s + (−0.193 + 0.271i)9-s + (−0.0956 + 0.394i)10-s + (−0.331 + 0.114i)11-s + (0.0546 − 0.283i)12-s + (−0.519 − 1.76i)13-s + (0.586 + 0.394i)14-s + (−0.179 − 0.278i)15-s + (0.0589 + 0.242i)16-s + (0.0158 + 0.00634i)17-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)(−0.977−0.210i)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)(−0.977−0.210i)Λ(1−s)
Degree: |
2 |
Conductor: |
966
= 2⋅3⋅7⋅23
|
Sign: |
−0.977−0.210i
|
Analytic conductor: |
7.71354 |
Root analytic conductor: |
2.77732 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ966(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 966, ( :1/2), −0.977−0.210i)
|
Particular Values
L(1) |
≈ |
0.00715958+0.0673010i |
L(21) |
≈ |
0.00715958+0.0673010i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.327+0.945i)T |
| 3 | 1+(−0.458−0.888i)T |
| 7 | 1+(0.678−2.55i)T |
| 23 | 1+(0.864+4.71i)T |
good | 5 | 1+(1.27−0.121i)T+(4.90−0.946i)T2 |
| 11 | 1+(1.09−0.380i)T+(8.64−6.79i)T2 |
| 13 | 1+(1.87+6.37i)T+(−10.9+7.02i)T2 |
| 17 | 1+(−0.0653−0.0261i)T+(12.3+11.7i)T2 |
| 19 | 1+(3.05−1.22i)T+(13.7−13.1i)T2 |
| 29 | 1+(−0.347−2.41i)T+(−27.8+8.17i)T2 |
| 31 | 1+(2.40−0.114i)T+(30.8−2.94i)T2 |
| 37 | 1+(9.68+6.89i)T+(12.1+34.9i)T2 |
| 41 | 1+(6.49+2.96i)T+(26.8+30.9i)T2 |
| 43 | 1+(4.18−6.51i)T+(−17.8−39.1i)T2 |
| 47 | 1+(−1.08+0.628i)T+(23.5−40.7i)T2 |
| 53 | 1+(−1.70−1.78i)T+(−2.52+52.9i)T2 |
| 59 | 1+(−14.5−3.53i)T+(52.4+27.0i)T2 |
| 61 | 1+(−7.98−4.11i)T+(35.3+49.6i)T2 |
| 67 | 1+(−0.156−0.813i)T+(−62.2+24.9i)T2 |
| 71 | 1+(−3.06−3.53i)T+(−10.1+70.2i)T2 |
| 73 | 1+(1.16−1.47i)T+(−17.2−70.9i)T2 |
| 79 | 1+(11.8−12.4i)T+(−3.75−78.9i)T2 |
| 83 | 1+(2.25+4.92i)T+(−54.3+62.7i)T2 |
| 89 | 1+(0.0883−1.85i)T+(−88.5−8.45i)T2 |
| 97 | 1+(−3.67+8.03i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.882144053124298745685471412438, −8.626229960824212770538129688929, −8.313729964101304964286884774106, −7.11465387110313013014048634651, −5.69978140787089497393285078815, −5.18489095873057399587672892433, −3.98084659331970810923433193374, −3.10094259394875831414749043509, −2.23592426715665195602102039452, −0.02624802339623618242754247880,
1.89858018621979962780088855811, 3.51668146596051145793951016624, 4.21341454636615972198223855727, 5.24258295293047397360889899170, 6.66394421563571644093063779422, 6.92045172593026062797342416800, 7.82529500311166714075418127691, 8.551445835089655471938318340410, 9.490799920443516579335746461377, 10.31967168154167157812281217104