Properties

Label 2-968-1.1-c1-0-10
Degree $2$
Conductor $968$
Sign $1$
Analytic cond. $7.72951$
Root an. cond. $2.78020$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s − 2·9-s + 4·13-s + 15-s + 4·17-s − 4·19-s + 4·21-s − 3·23-s − 4·25-s − 5·27-s + 8·29-s + 9·31-s + 4·35-s − 5·37-s + 4·39-s − 12·41-s + 8·43-s − 2·45-s + 4·47-s + 9·49-s + 4·51-s − 10·53-s − 4·57-s + 7·59-s − 8·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s − 2/3·9-s + 1.10·13-s + 0.258·15-s + 0.970·17-s − 0.917·19-s + 0.872·21-s − 0.625·23-s − 4/5·25-s − 0.962·27-s + 1.48·29-s + 1.61·31-s + 0.676·35-s − 0.821·37-s + 0.640·39-s − 1.87·41-s + 1.21·43-s − 0.298·45-s + 0.583·47-s + 9/7·49-s + 0.560·51-s − 1.37·53-s − 0.529·57-s + 0.911·59-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(968\)    =    \(2^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(7.72951\)
Root analytic conductor: \(2.78020\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.408756104\)
\(L(\frac12)\) \(\approx\) \(2.408756104\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09251216461769686180120999755, −8.955204884515233663001449782687, −8.185775398334261426246211010655, −8.013124707654302294842241987618, −6.50037997902893774125269658524, −5.69647785290924362492290860490, −4.74414023623583900243885089454, −3.66738310623365329492205537138, −2.44137744204399593498082489636, −1.39420752604704988889459239823, 1.39420752604704988889459239823, 2.44137744204399593498082489636, 3.66738310623365329492205537138, 4.74414023623583900243885089454, 5.69647785290924362492290860490, 6.50037997902893774125269658524, 8.013124707654302294842241987618, 8.185775398334261426246211010655, 8.955204884515233663001449782687, 10.09251216461769686180120999755

Graph of the $Z$-function along the critical line