L(s) = 1 | − 1.61·3-s + 0.618·5-s − 1.61·7-s − 0.381·9-s + 5.85·13-s − 1.00·15-s + 1.85·17-s − 4.85·19-s + 2.61·21-s − 4·23-s − 4.61·25-s + 5.47·27-s − 7.32·29-s + 1.09·31-s − 1.00·35-s − 9.61·37-s − 9.47·39-s + 9.61·41-s − 1.52·43-s − 0.236·45-s − 10.5·47-s − 4.38·49-s − 3·51-s + 0.618·53-s + 7.85·57-s − 2.38·59-s + 1.85·61-s + ⋯ |
L(s) = 1 | − 0.934·3-s + 0.276·5-s − 0.611·7-s − 0.127·9-s + 1.62·13-s − 0.258·15-s + 0.449·17-s − 1.11·19-s + 0.571·21-s − 0.834·23-s − 0.923·25-s + 1.05·27-s − 1.36·29-s + 0.195·31-s − 0.169·35-s − 1.58·37-s − 1.51·39-s + 1.50·41-s − 0.232·43-s − 0.0351·45-s − 1.54·47-s − 0.625·49-s − 0.420·51-s + 0.0848·53-s + 1.04·57-s − 0.310·59-s + 0.237·61-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+1.61T+3T2 |
| 5 | 1−0.618T+5T2 |
| 7 | 1+1.61T+7T2 |
| 13 | 1−5.85T+13T2 |
| 17 | 1−1.85T+17T2 |
| 19 | 1+4.85T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+7.32T+29T2 |
| 31 | 1−1.09T+31T2 |
| 37 | 1+9.61T+37T2 |
| 41 | 1−9.61T+41T2 |
| 43 | 1+1.52T+43T2 |
| 47 | 1+10.5T+47T2 |
| 53 | 1−0.618T+53T2 |
| 59 | 1+2.38T+59T2 |
| 61 | 1−1.85T+61T2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1+5.09T+71T2 |
| 73 | 1−3.14T+73T2 |
| 79 | 1−3.85T+79T2 |
| 83 | 1+9.38T+83T2 |
| 89 | 1+4.47T+89T2 |
| 97 | 1+12.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.718155373631337909562928826012, −8.790340375267244736428367243560, −7.993669350098141213010103018783, −6.72500884991025223316708225768, −6.02617977199967583271809473827, −5.59912022531615973356578863948, −4.23320561779896701245064714031, −3.28203777656175467468818893269, −1.70035795728857034723097312919, 0,
1.70035795728857034723097312919, 3.28203777656175467468818893269, 4.23320561779896701245064714031, 5.59912022531615973356578863948, 6.02617977199967583271809473827, 6.72500884991025223316708225768, 7.993669350098141213010103018783, 8.790340375267244736428367243560, 9.718155373631337909562928826012