L(s) = 1 | + 0.618·3-s − 1.61·5-s − 0.618·7-s − 2.61·9-s + 0.854·13-s − 1.00·15-s + 4.85·17-s − 1.85·19-s − 0.381·21-s − 4·23-s − 2.38·25-s − 3.47·27-s − 8.32·29-s − 10.0·31-s + 1.00·35-s − 7.38·37-s + 0.527·39-s − 7.38·41-s + 10.4·43-s + 4.23·45-s + 9.56·47-s − 6.61·49-s + 3.00·51-s − 1.61·53-s − 1.14·57-s − 4.61·59-s + 4.85·61-s + ⋯ |
L(s) = 1 | + 0.356·3-s − 0.723·5-s − 0.233·7-s − 0.872·9-s + 0.236·13-s − 0.258·15-s + 1.17·17-s − 0.425·19-s − 0.0833·21-s − 0.834·23-s − 0.476·25-s − 0.668·27-s − 1.54·29-s − 1.81·31-s + 0.169·35-s − 1.21·37-s + 0.0845·39-s − 1.15·41-s + 1.59·43-s + 0.631·45-s + 1.39·47-s − 0.945·49-s + 0.420·51-s − 0.222·53-s − 0.151·57-s − 0.601·59-s + 0.621·61-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−0.618T+3T2 |
| 5 | 1+1.61T+5T2 |
| 7 | 1+0.618T+7T2 |
| 13 | 1−0.854T+13T2 |
| 17 | 1−4.85T+17T2 |
| 19 | 1+1.85T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+8.32T+29T2 |
| 31 | 1+10.0T+31T2 |
| 37 | 1+7.38T+37T2 |
| 41 | 1+7.38T+41T2 |
| 43 | 1−10.4T+43T2 |
| 47 | 1−9.56T+47T2 |
| 53 | 1+1.61T+53T2 |
| 59 | 1+4.61T+59T2 |
| 61 | 1−4.85T+61T2 |
| 67 | 1+5.52T+67T2 |
| 71 | 1−6.09T+71T2 |
| 73 | 1+9.85T+73T2 |
| 79 | 1−2.85T+79T2 |
| 83 | 1−11.6T+83T2 |
| 89 | 1−4.47T+89T2 |
| 97 | 1−3.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.440641779066685401342939046575, −8.771811553898020880839308821769, −7.86307467986172443645176153073, −7.35278018492927500390542851351, −6.02829909448762209990088214931, −5.36704958470025533475891292204, −3.88477704108596484249207887343, −3.38218130462768167333156556197, −1.98237740972733751436662819945, 0,
1.98237740972733751436662819945, 3.38218130462768167333156556197, 3.88477704108596484249207887343, 5.36704958470025533475891292204, 6.02829909448762209990088214931, 7.35278018492927500390542851351, 7.86307467986172443645176153073, 8.771811553898020880839308821769, 9.440641779066685401342939046575