Properties

Label 2-968-1.1-c1-0-6
Degree $2$
Conductor $968$
Sign $1$
Analytic cond. $7.72951$
Root an. cond. $2.78020$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.23·3-s + 2.23·5-s + 3.23·7-s + 7.47·9-s + 1.76·13-s − 7.23·15-s + 17-s − 5.70·19-s − 10.4·21-s + 0.763·23-s − 14.4·27-s + 1.76·29-s + 4.76·31-s + 7.23·35-s − 0.236·37-s − 5.70·39-s + 7.47·41-s + 10.4·43-s + 16.7·45-s + 5.70·47-s + 3.47·49-s − 3.23·51-s − 13.1·53-s + 18.4·57-s − 5.52·59-s + 14.9·61-s + 24.1·63-s + ⋯
L(s)  = 1  − 1.86·3-s + 0.999·5-s + 1.22·7-s + 2.49·9-s + 0.489·13-s − 1.86·15-s + 0.242·17-s − 1.30·19-s − 2.28·21-s + 0.159·23-s − 2.78·27-s + 0.327·29-s + 0.855·31-s + 1.22·35-s − 0.0388·37-s − 0.914·39-s + 1.16·41-s + 1.59·43-s + 2.49·45-s + 0.832·47-s + 0.496·49-s − 0.453·51-s − 1.81·53-s + 2.44·57-s − 0.719·59-s + 1.91·61-s + 3.04·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(968\)    =    \(2^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(7.72951\)
Root analytic conductor: \(2.78020\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.224627343\)
\(L(\frac12)\) \(\approx\) \(1.224627343\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 3.23T + 3T^{2} \)
5 \( 1 - 2.23T + 5T^{2} \)
7 \( 1 - 3.23T + 7T^{2} \)
13 \( 1 - 1.76T + 13T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 + 5.70T + 19T^{2} \)
23 \( 1 - 0.763T + 23T^{2} \)
29 \( 1 - 1.76T + 29T^{2} \)
31 \( 1 - 4.76T + 31T^{2} \)
37 \( 1 + 0.236T + 37T^{2} \)
41 \( 1 - 7.47T + 41T^{2} \)
43 \( 1 - 10.4T + 43T^{2} \)
47 \( 1 - 5.70T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 5.52T + 59T^{2} \)
61 \( 1 - 14.9T + 61T^{2} \)
67 \( 1 + 0.763T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 3.52T + 73T^{2} \)
79 \( 1 + 7.23T + 79T^{2} \)
83 \( 1 - 12.1T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31846294866429154463528586243, −9.446177358737667417530547865169, −8.288445990407859052952823952227, −7.26108951946828757838567593700, −6.19674225091174843181567445059, −5.86114259675181829736928730372, −4.89308847686214655907872192021, −4.25464656987388789999573726974, −2.07899325679545239886163437291, −1.02521012388011631360463105375, 1.02521012388011631360463105375, 2.07899325679545239886163437291, 4.25464656987388789999573726974, 4.89308847686214655907872192021, 5.86114259675181829736928730372, 6.19674225091174843181567445059, 7.26108951946828757838567593700, 8.288445990407859052952823952227, 9.446177358737667417530547865169, 10.31846294866429154463528586243

Graph of the $Z$-function along the critical line