L(s) = 1 | − 3.23·3-s + 2.23·5-s + 3.23·7-s + 7.47·9-s + 1.76·13-s − 7.23·15-s + 17-s − 5.70·19-s − 10.4·21-s + 0.763·23-s − 14.4·27-s + 1.76·29-s + 4.76·31-s + 7.23·35-s − 0.236·37-s − 5.70·39-s + 7.47·41-s + 10.4·43-s + 16.7·45-s + 5.70·47-s + 3.47·49-s − 3.23·51-s − 13.1·53-s + 18.4·57-s − 5.52·59-s + 14.9·61-s + 24.1·63-s + ⋯ |
L(s) = 1 | − 1.86·3-s + 0.999·5-s + 1.22·7-s + 2.49·9-s + 0.489·13-s − 1.86·15-s + 0.242·17-s − 1.30·19-s − 2.28·21-s + 0.159·23-s − 2.78·27-s + 0.327·29-s + 0.855·31-s + 1.22·35-s − 0.0388·37-s − 0.914·39-s + 1.16·41-s + 1.59·43-s + 2.49·45-s + 0.832·47-s + 0.496·49-s − 0.453·51-s − 1.81·53-s + 2.44·57-s − 0.719·59-s + 1.91·61-s + 3.04·63-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(968s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.224627343 |
L(21) |
≈ |
1.224627343 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+3.23T+3T2 |
| 5 | 1−2.23T+5T2 |
| 7 | 1−3.23T+7T2 |
| 13 | 1−1.76T+13T2 |
| 17 | 1−T+17T2 |
| 19 | 1+5.70T+19T2 |
| 23 | 1−0.763T+23T2 |
| 29 | 1−1.76T+29T2 |
| 31 | 1−4.76T+31T2 |
| 37 | 1+0.236T+37T2 |
| 41 | 1−7.47T+41T2 |
| 43 | 1−10.4T+43T2 |
| 47 | 1−5.70T+47T2 |
| 53 | 1+13.1T+53T2 |
| 59 | 1+5.52T+59T2 |
| 61 | 1−14.9T+61T2 |
| 67 | 1+0.763T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1−3.52T+73T2 |
| 79 | 1+7.23T+79T2 |
| 83 | 1−12.1T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1−11.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31846294866429154463528586243, −9.446177358737667417530547865169, −8.288445990407859052952823952227, −7.26108951946828757838567593700, −6.19674225091174843181567445059, −5.86114259675181829736928730372, −4.89308847686214655907872192021, −4.25464656987388789999573726974, −2.07899325679545239886163437291, −1.02521012388011631360463105375,
1.02521012388011631360463105375, 2.07899325679545239886163437291, 4.25464656987388789999573726974, 4.89308847686214655907872192021, 5.86114259675181829736928730372, 6.19674225091174843181567445059, 7.26108951946828757838567593700, 8.288445990407859052952823952227, 9.446177358737667417530547865169, 10.31846294866429154463528586243