L(s) = 1 | + (−1.34 + 0.437i)2-s + (−0.0359 − 0.0261i)3-s + (1.61 − 1.17i)4-s + (0.0598 + 0.0194i)6-s + (−1.66 + 2.28i)8-s + (−0.926 − 2.85i)9-s − 0.0889·12-s + (1.23 − 3.80i)16-s + (−3.76 − 1.22i)17-s + (2.49 + 3.43i)18-s + (−2.65 + 3.66i)19-s + (0.119 − 0.0388i)24-s + (−4.04 − 2.93i)25-s + (−0.0824 + 0.253i)27-s + 5.65i·32-s + ⋯ |
L(s) = 1 | + (−0.951 + 0.309i)2-s + (−0.0207 − 0.0150i)3-s + (0.809 − 0.587i)4-s + (0.0244 + 0.00793i)6-s + (−0.587 + 0.809i)8-s + (−0.308 − 0.950i)9-s − 0.0256·12-s + (0.309 − 0.951i)16-s + (−0.913 − 0.296i)17-s + (0.587 + 0.808i)18-s + (−0.610 + 0.839i)19-s + (0.0244 − 0.00793i)24-s + (−0.809 − 0.587i)25-s + (−0.0158 + 0.0488i)27-s + 1.00i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.909 + 0.416i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.909 + 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0381804 - 0.175068i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0381804 - 0.175068i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 - 0.437i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.0359 + 0.0261i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + (4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (3.76 + 1.22i)T + (13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (2.65 - 3.66i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (7.45 - 10.2i)T + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 12.7iT - 43T^{2} \) |
| 47 | \( 1 + (-14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (9.38 - 6.81i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 12.3T + 67T^{2} \) |
| 71 | \( 1 + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (7.37 + 10.1i)T + (-22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (12.2 + 3.97i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 17.8T + 89T^{2} \) |
| 97 | \( 1 + (5.58 + 17.1i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.604410166728345718024155946245, −8.768043636578451530712067860290, −8.183810376307093680571869611593, −7.12159486820145165426833879927, −6.37345876487170036472002987761, −5.68058520119245833170905205859, −4.31217694260404641171611152605, −2.99654650048010015027728634458, −1.71939691483490035977783903654, −0.10649088180158756138715827104,
1.78583644548192812089567404171, 2.70595147384849362482474060645, 3.99609730131615657956111421278, 5.19068869853605385350088027700, 6.36796155191010471947336625734, 7.16099410842319220092261860553, 8.095241886814141247249405871781, 8.675746660451813013180675088032, 9.544209524046389047759754334694, 10.37530492563879473086764010716