L(s) = 1 | + 2-s + 4-s + 2·5-s + 8-s + 2·10-s + 11-s + 4·13-s + 16-s + 2·17-s + 6·19-s + 2·20-s + 22-s + 2·23-s − 25-s + 4·26-s + 2·29-s + 8·31-s + 32-s + 2·34-s − 2·37-s + 6·38-s + 2·40-s − 2·41-s − 2·43-s + 44-s + 2·46-s + 2·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s + 0.301·11-s + 1.10·13-s + 1/4·16-s + 0.485·17-s + 1.37·19-s + 0.447·20-s + 0.213·22-s + 0.417·23-s − 1/5·25-s + 0.784·26-s + 0.371·29-s + 1.43·31-s + 0.176·32-s + 0.342·34-s − 0.328·37-s + 0.973·38-s + 0.316·40-s − 0.312·41-s − 0.304·43-s + 0.150·44-s + 0.294·46-s + 0.291·47-s + ⋯ |
Λ(s)=(=(9702s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9702s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.062076218 |
L(21) |
≈ |
5.062076218 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 7 | 1 |
| 11 | 1−T |
good | 5 | 1−2T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+10T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.55681813847005856187427135991, −6.79923493510247629545251393096, −6.15158471182841855400365242253, −5.69276000012681049628626494586, −5.00735722361764893107385149224, −4.23232022692161449850766373388, −3.33365417041840785728112437626, −2.83066461663364441278499665394, −1.69008397864184290335637215528, −1.06738870446855368402014094401,
1.06738870446855368402014094401, 1.69008397864184290335637215528, 2.83066461663364441278499665394, 3.33365417041840785728112437626, 4.23232022692161449850766373388, 5.00735722361764893107385149224, 5.69276000012681049628626494586, 6.15158471182841855400365242253, 6.79923493510247629545251393096, 7.55681813847005856187427135991