Properties

Label 2-9702-1.1-c1-0-103
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s + 11-s + 4·13-s + 16-s + 2·17-s + 6·19-s + 2·20-s + 22-s + 2·23-s − 25-s + 4·26-s + 2·29-s + 8·31-s + 32-s + 2·34-s − 2·37-s + 6·38-s + 2·40-s − 2·41-s − 2·43-s + 44-s + 2·46-s + 2·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s + 0.301·11-s + 1.10·13-s + 1/4·16-s + 0.485·17-s + 1.37·19-s + 0.447·20-s + 0.213·22-s + 0.417·23-s − 1/5·25-s + 0.784·26-s + 0.371·29-s + 1.43·31-s + 0.176·32-s + 0.342·34-s − 0.328·37-s + 0.973·38-s + 0.316·40-s − 0.312·41-s − 0.304·43-s + 0.150·44-s + 0.294·46-s + 0.291·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.062076218\)
\(L(\frac12)\) \(\approx\) \(5.062076218\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55681813847005856187427135991, −6.79923493510247629545251393096, −6.15158471182841855400365242253, −5.69276000012681049628626494586, −5.00735722361764893107385149224, −4.23232022692161449850766373388, −3.33365417041840785728112437626, −2.83066461663364441278499665394, −1.69008397864184290335637215528, −1.06738870446855368402014094401, 1.06738870446855368402014094401, 1.69008397864184290335637215528, 2.83066461663364441278499665394, 3.33365417041840785728112437626, 4.23232022692161449850766373388, 5.00735722361764893107385149224, 5.69276000012681049628626494586, 6.15158471182841855400365242253, 6.79923493510247629545251393096, 7.55681813847005856187427135991

Graph of the $Z$-function along the critical line