Properties

Label 2-9702-1.1-c1-0-13
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4.24·5-s + 8-s − 4.24·10-s + 11-s − 5.65·13-s + 16-s + 7.07·17-s − 1.41·19-s − 4.24·20-s + 22-s − 8·23-s + 12.9·25-s − 5.65·26-s − 8·29-s − 4.24·31-s + 32-s + 7.07·34-s + 2·37-s − 1.41·38-s − 4.24·40-s − 1.41·41-s + 8·43-s + 44-s − 8·46-s − 9.89·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.89·5-s + 0.353·8-s − 1.34·10-s + 0.301·11-s − 1.56·13-s + 0.250·16-s + 1.71·17-s − 0.324·19-s − 0.948·20-s + 0.213·22-s − 1.66·23-s + 2.59·25-s − 1.10·26-s − 1.48·29-s − 0.762·31-s + 0.176·32-s + 1.21·34-s + 0.328·37-s − 0.229·38-s − 0.670·40-s − 0.220·41-s + 1.21·43-s + 0.150·44-s − 1.17·46-s − 1.44·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.394145363\)
\(L(\frac12)\) \(\approx\) \(1.394145363\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 4.24T + 5T^{2} \)
13 \( 1 + 5.65T + 13T^{2} \)
17 \( 1 - 7.07T + 17T^{2} \)
19 \( 1 + 1.41T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 + 4.24T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 1.41T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + 9.89T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 2T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 7.07T + 73T^{2} \)
79 \( 1 - 14T + 79T^{2} \)
83 \( 1 + 12.7T + 83T^{2} \)
89 \( 1 + 2.82T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64237378190284382626502176872, −7.23529732976440376564278018112, −6.31379308903666659676982443695, −5.43903277770441363599306416197, −4.84765407002803512759445722464, −3.99411104021243218827464310221, −3.70098563644304581625936866985, −2.89099726804840606470677234409, −1.86775937281223155504819933929, −0.48629823480832068836236020566, 0.48629823480832068836236020566, 1.86775937281223155504819933929, 2.89099726804840606470677234409, 3.70098563644304581625936866985, 3.99411104021243218827464310221, 4.84765407002803512759445722464, 5.43903277770441363599306416197, 6.31379308903666659676982443695, 7.23529732976440376564278018112, 7.64237378190284382626502176872

Graph of the $Z$-function along the critical line