L(s) = 1 | + i·2-s − i·3-s + 4-s + 6-s − 3i·7-s + 3i·8-s − 9-s − 11-s − i·12-s − i·13-s + 3·14-s − 16-s − 5i·17-s − i·18-s + 8·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s + 0.5·4-s + 0.408·6-s − 1.13i·7-s + 1.06i·8-s − 0.333·9-s − 0.301·11-s − 0.288i·12-s − 0.277i·13-s + 0.801·14-s − 0.250·16-s − 1.21i·17-s − 0.235i·18-s + 1.83·19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.79410−0.423531i |
L(21) |
≈ |
1.79410−0.423531i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1 |
| 13 | 1+iT |
good | 2 | 1−iT−2T2 |
| 7 | 1+3iT−7T2 |
| 11 | 1+T+11T2 |
| 17 | 1+5iT−17T2 |
| 19 | 1−8T+19T2 |
| 23 | 1−23T2 |
| 29 | 1+T+29T2 |
| 31 | 1−3T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1+11iT−47T2 |
| 53 | 1−11iT−53T2 |
| 59 | 1+5T+59T2 |
| 61 | 1−T+61T2 |
| 67 | 1−3iT−67T2 |
| 71 | 1−16T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1−3iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.993365486017427421181187407919, −8.931870849238938903462290077281, −7.81579865387732758228568223813, −7.34426558003431121544280184614, −6.88062157319066545505867244925, −5.70509225015289243159030107494, −5.02701032876611107425291241719, −3.52997842255030820555157743329, −2.42895203304094878911833113373, −0.902528051191669292261780888325,
1.53357364983604927373442074658, 2.74840290685116707800225510351, 3.44831572882204286425184494551, 4.72309955422586542185131622997, 5.74135727289181725149398634475, 6.48066467962313670565829759637, 7.69713105689630168693199699420, 8.548589806551599059976766094615, 9.610572909105518852360956890047, 9.953219325022572253019619379447