L(s) = 1 | + 0.414·3-s + 5-s − 2.82·9-s − 3.82·11-s − 3.58·13-s + 0.414·15-s − 6.41·17-s − 3.65·19-s + 0.585·23-s + 25-s − 2.41·27-s + 6.65·29-s − 4.58·31-s − 1.58·33-s − 3.41·37-s − 1.48·39-s − 0.585·41-s + 11.6·43-s − 2.82·45-s + 8.89·47-s − 2.65·51-s − 3.75·53-s − 3.82·55-s − 1.51·57-s − 3.41·59-s − 5.17·61-s − 3.58·65-s + ⋯ |
L(s) = 1 | + 0.239·3-s + 0.447·5-s − 0.942·9-s − 1.15·11-s − 0.994·13-s + 0.106·15-s − 1.55·17-s − 0.838·19-s + 0.122·23-s + 0.200·25-s − 0.464·27-s + 1.23·29-s − 0.823·31-s − 0.276·33-s − 0.561·37-s − 0.237·39-s − 0.0914·41-s + 1.77·43-s − 0.421·45-s + 1.29·47-s − 0.372·51-s − 0.516·53-s − 0.516·55-s − 0.200·57-s − 0.444·59-s − 0.662·61-s − 0.444·65-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 7 | 1 |
good | 3 | 1−0.414T+3T2 |
| 11 | 1+3.82T+11T2 |
| 13 | 1+3.58T+13T2 |
| 17 | 1+6.41T+17T2 |
| 19 | 1+3.65T+19T2 |
| 23 | 1−0.585T+23T2 |
| 29 | 1−6.65T+29T2 |
| 31 | 1+4.58T+31T2 |
| 37 | 1+3.41T+37T2 |
| 41 | 1+0.585T+41T2 |
| 43 | 1−11.6T+43T2 |
| 47 | 1−8.89T+47T2 |
| 53 | 1+3.75T+53T2 |
| 59 | 1+3.41T+59T2 |
| 61 | 1+5.17T+61T2 |
| 67 | 1+11.0T+67T2 |
| 71 | 1−6.48T+71T2 |
| 73 | 1+5.17T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1−8T+83T2 |
| 89 | 1+16.9T+89T2 |
| 97 | 1+15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.436586401103624970366121579536, −8.817887005457252545901925322918, −8.001682359547254971705465851892, −7.07028403257897782882513009419, −6.10348288756034816076782637821, −5.22370344588509756500589218610, −4.34560793882724563776534950263, −2.79899269739276673639862887077, −2.24009351742173665139724222091, 0,
2.24009351742173665139724222091, 2.79899269739276673639862887077, 4.34560793882724563776534950263, 5.22370344588509756500589218610, 6.10348288756034816076782637821, 7.07028403257897782882513009419, 8.001682359547254971705465851892, 8.817887005457252545901925322918, 9.436586401103624970366121579536