L(s) = 1 | + (0.604 − 1.27i)2-s + (0.844 − 3.15i)3-s + (−1.26 − 1.54i)4-s + (−1.79 + 1.33i)5-s + (−3.52 − 2.98i)6-s + (−2.74 + 0.689i)8-s + (−6.62 − 3.82i)9-s + (0.624 + 3.10i)10-s + (−1.96 + 1.13i)11-s + (−5.94 + 2.69i)12-s + (1.38 − 1.38i)13-s + (2.69 + 6.78i)15-s + (−0.775 + 3.92i)16-s + (0.0499 − 0.186i)17-s + (−8.89 + 6.15i)18-s + (3.45 − 5.98i)19-s + ⋯ |
L(s) = 1 | + (0.427 − 0.904i)2-s + (0.487 − 1.81i)3-s + (−0.634 − 0.772i)4-s + (−0.801 + 0.597i)5-s + (−1.43 − 1.21i)6-s + (−0.969 + 0.243i)8-s + (−2.20 − 1.27i)9-s + (0.197 + 0.980i)10-s + (−0.593 + 0.342i)11-s + (−1.71 + 0.778i)12-s + (0.383 − 0.383i)13-s + (0.696 + 1.75i)15-s + (−0.193 + 0.981i)16-s + (0.0121 − 0.0451i)17-s + (−2.09 + 1.45i)18-s + (0.792 − 1.37i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0134 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0134 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.679484 + 0.670403i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.679484 + 0.670403i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.604 + 1.27i)T \) |
| 5 | \( 1 + (1.79 - 1.33i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.844 + 3.15i)T + (-2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (1.96 - 1.13i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.38 + 1.38i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.0499 + 0.186i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.45 + 5.98i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.23 - 0.866i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 7.33iT - 29T^{2} \) |
| 31 | \( 1 + (-0.430 + 0.248i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.37 - 0.904i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 3.22T + 41T^{2} \) |
| 43 | \( 1 + (2.91 + 2.91i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.645 - 2.40i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (6.98 + 1.87i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.61 + 4.52i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.00 + 8.67i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.0 + 3.21i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 3.60iT - 71T^{2} \) |
| 73 | \( 1 + (12.6 + 3.38i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-5.66 + 9.81i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.591 + 0.591i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.45 + 1.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.09 + 1.09i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.264550238492010029655755207966, −8.440778969431994352452953698159, −7.63631636554058222270904499904, −6.94402107117828579395664128910, −6.05601524718866711485939918563, −4.91215224170800187082074617035, −3.36249491526999453495217016559, −2.84628671728495739761212721107, −1.71390309052939050977138259148, −0.35358893876480299876672390923,
2.98062853792938768110717225823, 3.89603894392084962993998478234, 4.33403183763944902983486059404, 5.32144328079970953224649648028, 5.95640608059892687475044447794, 7.62825658349397665832690122735, 8.206643222819658670993523655631, 8.812564864307479162600329930521, 9.634940186825094571767712559371, 10.36083258518905835173100188248