L(s) = 1 | + (0.604 − 1.27i)2-s + (0.844 − 3.15i)3-s + (−1.26 − 1.54i)4-s + (−1.79 + 1.33i)5-s + (−3.52 − 2.98i)6-s + (−2.74 + 0.689i)8-s + (−6.62 − 3.82i)9-s + (0.624 + 3.10i)10-s + (−1.96 + 1.13i)11-s + (−5.94 + 2.69i)12-s + (1.38 − 1.38i)13-s + (2.69 + 6.78i)15-s + (−0.775 + 3.92i)16-s + (0.0499 − 0.186i)17-s + (−8.89 + 6.15i)18-s + (3.45 − 5.98i)19-s + ⋯ |
L(s) = 1 | + (0.427 − 0.904i)2-s + (0.487 − 1.81i)3-s + (−0.634 − 0.772i)4-s + (−0.801 + 0.597i)5-s + (−1.43 − 1.21i)6-s + (−0.969 + 0.243i)8-s + (−2.20 − 1.27i)9-s + (0.197 + 0.980i)10-s + (−0.593 + 0.342i)11-s + (−1.71 + 0.778i)12-s + (0.383 − 0.383i)13-s + (0.696 + 1.75i)15-s + (−0.193 + 0.981i)16-s + (0.0121 − 0.0451i)17-s + (−2.09 + 1.45i)18-s + (0.792 − 1.37i)19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.0134−0.999i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.0134−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.0134−0.999i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.0134−0.999i)
|
Particular Values
L(1) |
≈ |
0.679484+0.670403i |
L(21) |
≈ |
0.679484+0.670403i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.604+1.27i)T |
| 5 | 1+(1.79−1.33i)T |
| 7 | 1 |
good | 3 | 1+(−0.844+3.15i)T+(−2.59−1.5i)T2 |
| 11 | 1+(1.96−1.13i)T+(5.5−9.52i)T2 |
| 13 | 1+(−1.38+1.38i)T−13iT2 |
| 17 | 1+(−0.0499+0.186i)T+(−14.7−8.5i)T2 |
| 19 | 1+(−3.45+5.98i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.23−0.866i)T+(19.9−11.5i)T2 |
| 29 | 1−7.33iT−29T2 |
| 31 | 1+(−0.430+0.248i)T+(15.5−26.8i)T2 |
| 37 | 1+(3.37−0.904i)T+(32.0−18.5i)T2 |
| 41 | 1−3.22T+41T2 |
| 43 | 1+(2.91+2.91i)T+43iT2 |
| 47 | 1+(−0.645−2.40i)T+(−40.7+23.5i)T2 |
| 53 | 1+(6.98+1.87i)T+(45.8+26.5i)T2 |
| 59 | 1+(2.61+4.52i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−5.00+8.67i)T+(−30.5−52.8i)T2 |
| 67 | 1+(12.0+3.21i)T+(58.0+33.5i)T2 |
| 71 | 1+3.60iT−71T2 |
| 73 | 1+(12.6+3.38i)T+(63.2+36.5i)T2 |
| 79 | 1+(−5.66+9.81i)T+(−39.5−68.4i)T2 |
| 83 | 1+(0.591+0.591i)T+83iT2 |
| 89 | 1+(3.45+1.99i)T+(44.5+77.0i)T2 |
| 97 | 1+(1.09+1.09i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.264550238492010029655755207966, −8.440778969431994352452953698159, −7.63631636554058222270904499904, −6.94402107117828579395664128910, −6.05601524718866711485939918563, −4.91215224170800187082074617035, −3.36249491526999453495217016559, −2.84628671728495739761212721107, −1.71390309052939050977138259148, −0.35358893876480299876672390923,
2.98062853792938768110717225823, 3.89603894392084962993998478234, 4.33403183763944902983486059404, 5.32144328079970953224649648028, 5.95640608059892687475044447794, 7.62825658349397665832690122735, 8.206643222819658670993523655631, 8.812564864307479162600329930521, 9.634940186825094571767712559371, 10.36083258518905835173100188248