L(s) = 1 | + (1.02 − 0.970i)2-s + (−0.517 + 1.93i)3-s + (0.115 − 1.99i)4-s + (0.653 + 2.13i)5-s + (1.34 + 2.49i)6-s + (−1.81 − 2.16i)8-s + (−0.870 − 0.502i)9-s + (2.74 + 1.56i)10-s + (−4.92 + 2.84i)11-s + (3.79 + 1.25i)12-s + (−4.82 + 4.82i)13-s + (−4.47 + 0.155i)15-s + (−3.97 − 0.463i)16-s + (0.979 − 3.65i)17-s + (−1.38 + 0.327i)18-s + (0.564 − 0.977i)19-s + ⋯ |
L(s) = 1 | + (0.727 − 0.686i)2-s + (−0.299 + 1.11i)3-s + (0.0579 − 0.998i)4-s + (0.292 + 0.956i)5-s + (0.548 + 1.01i)6-s + (−0.642 − 0.765i)8-s + (−0.290 − 0.167i)9-s + (0.868 + 0.494i)10-s + (−1.48 + 0.856i)11-s + (1.09 + 0.363i)12-s + (−1.33 + 1.33i)13-s + (−1.15 + 0.0401i)15-s + (−0.993 − 0.115i)16-s + (0.237 − 0.886i)17-s + (−0.325 + 0.0772i)18-s + (0.129 − 0.224i)19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.451−0.892i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.451−0.892i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.451−0.892i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(667,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.451−0.892i)
|
Particular Values
L(1) |
≈ |
0.699074+1.13656i |
L(21) |
≈ |
0.699074+1.13656i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.02+0.970i)T |
| 5 | 1+(−0.653−2.13i)T |
| 7 | 1 |
good | 3 | 1+(0.517−1.93i)T+(−2.59−1.5i)T2 |
| 11 | 1+(4.92−2.84i)T+(5.5−9.52i)T2 |
| 13 | 1+(4.82−4.82i)T−13iT2 |
| 17 | 1+(−0.979+3.65i)T+(−14.7−8.5i)T2 |
| 19 | 1+(−0.564+0.977i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−4.70+1.26i)T+(19.9−11.5i)T2 |
| 29 | 1+0.781iT−29T2 |
| 31 | 1+(3.20−1.84i)T+(15.5−26.8i)T2 |
| 37 | 1+(−3.32+0.889i)T+(32.0−18.5i)T2 |
| 41 | 1+0.451T+41T2 |
| 43 | 1+(0.613+0.613i)T+43iT2 |
| 47 | 1+(−1.10−4.14i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.03+0.544i)T+(45.8+26.5i)T2 |
| 59 | 1+(−4.63−8.03i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.759−1.31i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−13.1−3.53i)T+(58.0+33.5i)T2 |
| 71 | 1−11.8iT−71T2 |
| 73 | 1+(−1.66−0.445i)T+(63.2+36.5i)T2 |
| 79 | 1+(2.73−4.73i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−0.968−0.968i)T+83iT2 |
| 89 | 1+(8.16+4.71i)T+(44.5+77.0i)T2 |
| 97 | 1+(−6.77−6.77i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25387685715272608189901762919, −9.805430550011990423639494490262, −9.247168342334730183511200268334, −7.36448868481133367545655835759, −6.89566536911466071959304946941, −5.46882872695057910866104165262, −4.93193517616907740616632529657, −4.19016869671033955357273309699, −2.89517231148849223461142107518, −2.21473286189472305932663795410,
0.46175636440420256575565203673, 2.20614063930517380206871810357, 3.34528596857595692507204736814, 4.89923595170796239125643146299, 5.46585111803510875893323161647, 6.09814695171933795800734810291, 7.27948189833807458709974706349, 7.912460005093465188053374078166, 8.356992996863981840515146387757, 9.628884123669378019884156454768