L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.793 − 0.608i)5-s + (−0.707 − 0.707i)8-s + (−0.866 + 0.5i)9-s + (0.608 + 0.793i)10-s + (−1.30 + 1.30i)13-s + (0.500 + 0.866i)16-s + (−0.739 + 0.198i)17-s + (0.965 − 0.258i)18-s + (−0.382 − 0.923i)20-s + (0.258 + 0.965i)25-s + (1.60 − 0.923i)26-s + 1.41i·29-s + (−0.258 − 0.965i)32-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.793 − 0.608i)5-s + (−0.707 − 0.707i)8-s + (−0.866 + 0.5i)9-s + (0.608 + 0.793i)10-s + (−1.30 + 1.30i)13-s + (0.500 + 0.866i)16-s + (−0.739 + 0.198i)17-s + (0.965 − 0.258i)18-s + (−0.382 − 0.923i)20-s + (0.258 + 0.965i)25-s + (1.60 − 0.923i)26-s + 1.41i·29-s + (−0.258 − 0.965i)32-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.442−0.896i)Λ(1−s)
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.442−0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.442−0.896i
|
Analytic conductor: |
0.489083 |
Root analytic conductor: |
0.699345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(423,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :0), −0.442−0.896i)
|
Particular Values
L(21) |
≈ |
0.2098698085 |
L(21) |
≈ |
0.2098698085 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965+0.258i)T |
| 5 | 1+(0.793+0.608i)T |
| 7 | 1 |
good | 3 | 1+(0.866−0.5i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(1.30−1.30i)T−iT2 |
| 17 | 1+(0.739−0.198i)T+(0.866−0.5i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.866+0.5i)T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(0.866+0.5i)T2 |
| 41 | 1+0.765iT−T2 |
| 43 | 1−iT2 |
| 47 | 1+(0.866+0.5i)T2 |
| 53 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(1.60−0.923i)T+(0.5−0.866i)T2 |
| 67 | 1+(0.866−0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.198+0.739i)T+(−0.866+0.5i)T2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(−0.923−1.60i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−1.30−1.30i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58509331467899059631913064337, −9.273059632179850819792288147242, −9.007749242780114431572499046949, −8.071453204772221924978167558190, −7.36070479481897925839917517709, −6.54970014253360384761863622464, −5.18747970343789059485017474280, −4.22979738489037623592835332475, −2.94868476808694279047656894752, −1.80173767710441374026707575090,
0.25224155225769042694524968774, 2.47895911302942702865657782955, 3.21953592942144381038144394182, 4.77912142873799789323165718452, 5.93274768787932598122853440615, 6.69051636225399937448884141736, 7.70118326770125708436697465717, 8.056571670827168070611320271409, 9.093945163117925026122343967201, 9.903195382520883118680170589129