L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.258 − 0.965i)5-s − 0.999i·8-s + (0.5 + 0.866i)9-s + (−0.258 − 0.965i)10-s + 1.41i·13-s + (−0.5 − 0.866i)16-s + (−1.22 − 0.707i)17-s + (0.866 + 0.499i)18-s + (−0.707 − 0.707i)20-s + (−0.866 − 0.499i)25-s + (0.707 + 1.22i)26-s + (−0.866 − 0.499i)32-s − 1.41·34-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.258 − 0.965i)5-s − 0.999i·8-s + (0.5 + 0.866i)9-s + (−0.258 − 0.965i)10-s + 1.41i·13-s + (−0.5 − 0.866i)16-s + (−1.22 − 0.707i)17-s + (0.866 + 0.499i)18-s + (−0.707 − 0.707i)20-s + (−0.866 − 0.499i)25-s + (0.707 + 1.22i)26-s + (−0.866 − 0.499i)32-s − 1.41·34-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.328+0.944i)Λ(1−s)
Λ(s)=(=(980s/2ΓC(s)L(s)(0.328+0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.328+0.944i
|
Analytic conductor: |
0.489083 |
Root analytic conductor: |
0.699345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(459,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :0), 0.328+0.944i)
|
Particular Values
L(21) |
≈ |
1.698306124 |
L(21) |
≈ |
1.698306124 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1+(−0.258+0.965i)T |
| 7 | 1 |
good | 3 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1−1.41iT−T2 |
| 17 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 41 | 1−1.41T+T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.707+1.22i)T+(−0.5+0.866i)T2 |
| 97 | 1+1.41iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09668256403529590553036571258, −9.339961940217215710522070140503, −8.590576557424563564510420489027, −7.26936529084338686246055238888, −6.53997326886289478204797337404, −5.39359275853674283116118357473, −4.65137667267739863832428856911, −4.08533714243369585529571767341, −2.43702674696240688646207824865, −1.56997585376123356412284055248,
2.20521203852142335097996614980, 3.31666910974646657766852397326, 4.03137258369416807580917582221, 5.31501265359363504375946607783, 6.16827925347434225808974143010, 6.80238051486425567189278622551, 7.57719904095778612843745925885, 8.512280805834303309378364583846, 9.557920937791690140886301999819, 10.65429995339887270788488095082