L(s) = 1 | + (−0.707 − 1.22i)2-s + (−2.73 − 1.58i)3-s + (−0.999 + 1.73i)4-s + (−1.93 + 1.11i)5-s + 4.47i·6-s + 2.82·8-s + (3.5 + 6.06i)9-s + (2.73 + 1.58i)10-s + (5.47 − 3.16i)12-s + 7.07·15-s + (−2.00 − 3.46i)16-s + (4.94 − 8.57i)18-s − 4.47i·20-s + (0.707 + 1.22i)23-s + (−7.74 − 4.47i)24-s + (2.5 − 4.33i)25-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)2-s + (−1.58 − 0.912i)3-s + (−0.499 + 0.866i)4-s + (−0.866 + 0.499i)5-s + 1.82i·6-s + 0.999·8-s + (1.16 + 2.02i)9-s + (0.866 + 0.499i)10-s + (1.58 − 0.912i)12-s + 1.82·15-s + (−0.500 − 0.866i)16-s + (1.16 − 2.02i)18-s − 0.999i·20-s + (0.147 + 0.255i)23-s + (−1.58 − 0.912i)24-s + (0.5 − 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00753872 + 0.237828i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00753872 + 0.237828i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 5 | \( 1 + (1.93 - 1.11i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (2.73 + 1.58i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.707 - 1.22i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.47iT - 41T^{2} \) |
| 43 | \( 1 + 12.7T + 43T^{2} \) |
| 47 | \( 1 + (-8.21 + 4.74i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (11.6 - 6.70i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.12 - 3.67i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.48iT - 83T^{2} \) |
| 89 | \( 1 + (-15.4 + 8.94i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04257138277026615537867023048, −8.638293397901377234221662902362, −7.77745623132512787821592101051, −7.11627806544814219834165429313, −6.35771372127730143008455050305, −5.11709702014835413584820326101, −4.23967735770535923272289497703, −2.89753492467038051098543232863, −1.47974768009478107089592088843, −0.22621123577249492399583140723,
0.970759973161819766323144674124, 3.76904074401895361466268613771, 4.69719590798114491271384739260, 5.15399451658012768346845962023, 6.16794052114615529266807651925, 6.86503844653039864843620031909, 7.87961576661394101453849948722, 8.842778734784477504469237622865, 9.588496075028759604936999337936, 10.48232463752536450916394294136