L(s) = 1 | + (−0.707 − 1.22i)2-s + (−2.73 − 1.58i)3-s + (−0.999 + 1.73i)4-s + (−1.93 + 1.11i)5-s + 4.47i·6-s + 2.82·8-s + (3.5 + 6.06i)9-s + (2.73 + 1.58i)10-s + (5.47 − 3.16i)12-s + 7.07·15-s + (−2.00 − 3.46i)16-s + (4.94 − 8.57i)18-s − 4.47i·20-s + (0.707 + 1.22i)23-s + (−7.74 − 4.47i)24-s + (2.5 − 4.33i)25-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)2-s + (−1.58 − 0.912i)3-s + (−0.499 + 0.866i)4-s + (−0.866 + 0.499i)5-s + 1.82i·6-s + 0.999·8-s + (1.16 + 2.02i)9-s + (0.866 + 0.499i)10-s + (1.58 − 0.912i)12-s + 1.82·15-s + (−0.500 − 0.866i)16-s + (1.16 − 2.02i)18-s − 0.999i·20-s + (0.147 + 0.255i)23-s + (−1.58 − 0.912i)24-s + (0.5 − 0.866i)25-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.997−0.0633i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.997−0.0633i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.997−0.0633i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(619,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.997−0.0633i)
|
Particular Values
L(1) |
≈ |
0.00753872+0.237828i |
L(21) |
≈ |
0.00753872+0.237828i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+1.22i)T |
| 5 | 1+(1.93−1.11i)T |
| 7 | 1 |
good | 3 | 1+(2.73+1.58i)T+(1.5+2.59i)T2 |
| 11 | 1+(5.5+9.52i)T2 |
| 13 | 1+13T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(−9.5+16.4i)T2 |
| 23 | 1+(−0.707−1.22i)T+(−11.5+19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(−15.5−26.8i)T2 |
| 37 | 1+(18.5−32.0i)T2 |
| 41 | 1−4.47iT−41T2 |
| 43 | 1+12.7T+43T2 |
| 47 | 1+(−8.21+4.74i)T+(23.5−40.7i)T2 |
| 53 | 1+(26.5+45.8i)T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(11.6−6.70i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.12−3.67i)T+(−33.5−58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1+(−36.5−63.2i)T2 |
| 79 | 1+(39.5−68.4i)T2 |
| 83 | 1+9.48iT−83T2 |
| 89 | 1+(−15.4+8.94i)T+(44.5−77.0i)T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04257138277026615537867023048, −8.638293397901377234221662902362, −7.77745623132512787821592101051, −7.11627806544814219834165429313, −6.35771372127730143008455050305, −5.11709702014835413584820326101, −4.23967735770535923272289497703, −2.89753492467038051098543232863, −1.47974768009478107089592088843, −0.22621123577249492399583140723,
0.970759973161819766323144674124, 3.76904074401895361466268613771, 4.69719590798114491271384739260, 5.15399451658012768346845962023, 6.16794052114615529266807651925, 6.86503844653039864843620031909, 7.87961576661394101453849948722, 8.842778734784477504469237622865, 9.588496075028759604936999337936, 10.48232463752536450916394294136