Properties

Label 2-980-20.19-c0-0-1
Degree $2$
Conductor $980$
Sign $1$
Analytic cond. $0.489083$
Root an. cond. $0.699345$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 10-s − 12-s + 15-s + 16-s − 20-s + 23-s + 24-s + 25-s + 27-s − 29-s − 30-s − 32-s + 40-s + 41-s + 43-s − 46-s + 2·47-s − 48-s − 50-s − 54-s + 58-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 10-s − 12-s + 15-s + 16-s − 20-s + 23-s + 24-s + 25-s + 27-s − 29-s − 30-s − 32-s + 40-s + 41-s + 43-s − 46-s + 2·47-s − 48-s − 50-s − 54-s + 58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.489083\)
Root analytic conductor: \(0.699345\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{980} (99, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3517709763\)
\(L(\frac12)\) \(\approx\) \(0.3517709763\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
good3 \( 1 + T + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 - T + T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( 1 - T + T^{2} \)
43 \( 1 - T + T^{2} \)
47 \( ( 1 - T )^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 - T + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( 1 + T + T^{2} \)
89 \( 1 - T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42354231321931317450699869928, −9.269874810140774012401872261697, −8.610891637354115887752619542777, −7.62027264082674202198978094764, −7.03056387031735253201866840097, −6.05881800475827923094127582578, −5.20071785912036012302023719718, −3.90623818502926466175496120981, −2.65504175226080796105475734693, −0.826539470459807720347956768792, 0.826539470459807720347956768792, 2.65504175226080796105475734693, 3.90623818502926466175496120981, 5.20071785912036012302023719718, 6.05881800475827923094127582578, 7.03056387031735253201866840097, 7.62027264082674202198978094764, 8.610891637354115887752619542777, 9.269874810140774012401872261697, 10.42354231321931317450699869928

Graph of the $Z$-function along the critical line