L(s) = 1 | + i·2-s − 4-s + (−0.707 − 0.707i)5-s − i·8-s − 9-s + (0.707 − 0.707i)10-s − 1.41i·13-s + 16-s − 1.41i·17-s − i·18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + 1.41·26-s + i·32-s + 1.41·34-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + (−0.707 − 0.707i)5-s − i·8-s − 9-s + (0.707 − 0.707i)10-s − 1.41i·13-s + 16-s − 1.41i·17-s − i·18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + 1.41·26-s + i·32-s + 1.41·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5568104354\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5568104354\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + 1.41iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 2iT - T^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.41iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.807968636322277987689931640934, −8.983558221277207994782848661729, −8.321375610689721246121577038221, −7.68497850518753325857033312683, −6.84961743495114197441092533626, −5.45404758597821470960295222444, −5.30304970252868633953811365137, −4.01903251288157073759077382382, −2.98530253044838178819832232157, −0.53534013729196280025652651376,
1.84120496562006941454486017563, 3.02755718847270443124899092917, 3.83947385823145028259015544178, 4.74815458656768011716886465042, 6.01430082940369843112638691450, 6.89604458435717238916698407724, 8.240522059169689902813379734440, 8.544680885048340428591286843487, 9.667332529496313533860220420156, 10.46238853933234341838056300457