L(s) = 1 | + i·2-s − 4-s + (−0.707 − 0.707i)5-s − i·8-s − 9-s + (0.707 − 0.707i)10-s − 1.41i·13-s + 16-s − 1.41i·17-s − i·18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + 1.41·26-s + i·32-s + 1.41·34-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + (−0.707 − 0.707i)5-s − i·8-s − 9-s + (0.707 − 0.707i)10-s − 1.41i·13-s + 16-s − 1.41i·17-s − i·18-s + (0.707 + 0.707i)20-s + 1.00i·25-s + 1.41·26-s + i·32-s + 1.41·34-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Λ(s)=(=(980s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
0.489083 |
Root analytic conductor: |
0.699345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :0), 0.707+0.707i)
|
Particular Values
L(21) |
≈ |
0.5568104354 |
L(21) |
≈ |
0.5568104354 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(0.707+0.707i)T |
| 7 | 1 |
good | 3 | 1+T2 |
| 11 | 1−T2 |
| 13 | 1+1.41iT−T2 |
| 17 | 1+1.41iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+2iT−T2 |
| 41 | 1+1.41T+T2 |
| 43 | 1+T2 |
| 47 | 1+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−1.41T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1−1.41iT−T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+1.41T+T2 |
| 97 | 1−1.41iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.807968636322277987689931640934, −8.983558221277207994782848661729, −8.321375610689721246121577038221, −7.68497850518753325857033312683, −6.84961743495114197441092533626, −5.45404758597821470960295222444, −5.30304970252868633953811365137, −4.01903251288157073759077382382, −2.98530253044838178819832232157, −0.53534013729196280025652651376,
1.84120496562006941454486017563, 3.02755718847270443124899092917, 3.83947385823145028259015544178, 4.74815458656768011716886465042, 6.01430082940369843112638691450, 6.89604458435717238916698407724, 8.240522059169689902813379734440, 8.544680885048340428591286843487, 9.667332529496313533860220420156, 10.46238853933234341838056300457