L(s) = 1 | + (−1.40 + 0.153i)2-s − 3.02·3-s + (1.95 − 0.432i)4-s + i·5-s + (4.25 − 0.465i)6-s + (−2.67 + 0.908i)8-s + 6.16·9-s + (−0.153 − 1.40i)10-s − 1.19i·11-s + (−5.91 + 1.30i)12-s + 4.83i·13-s − 3.02i·15-s + (3.62 − 1.68i)16-s − 2.54i·17-s + (−8.66 + 0.948i)18-s + 1.42·19-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.108i)2-s − 1.74·3-s + (0.976 − 0.216i)4-s + 0.447i·5-s + (1.73 − 0.190i)6-s + (−0.946 + 0.321i)8-s + 2.05·9-s + (−0.0486 − 0.444i)10-s − 0.360i·11-s + (−1.70 + 0.378i)12-s + 1.34i·13-s − 0.781i·15-s + (0.906 − 0.422i)16-s − 0.617i·17-s + (−2.04 + 0.223i)18-s + 0.326·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.475−0.879i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.475−0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.475−0.879i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.475−0.879i)
|
Particular Values
L(1) |
≈ |
0.386082+0.230153i |
L(21) |
≈ |
0.386082+0.230153i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.40−0.153i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1+3.02T+3T2 |
| 11 | 1+1.19iT−11T2 |
| 13 | 1−4.83iT−13T2 |
| 17 | 1+2.54iT−17T2 |
| 19 | 1−1.42T+19T2 |
| 23 | 1+5.80iT−23T2 |
| 29 | 1−0.774T+29T2 |
| 31 | 1+6.63T+31T2 |
| 37 | 1−5.10T+37T2 |
| 41 | 1+7.46iT−41T2 |
| 43 | 1+1.38iT−43T2 |
| 47 | 1+1.07T+47T2 |
| 53 | 1−3.36T+53T2 |
| 59 | 1−9.88T+59T2 |
| 61 | 1−9.59iT−61T2 |
| 67 | 1−10.5iT−67T2 |
| 71 | 1−16.3iT−71T2 |
| 73 | 1+0.107iT−73T2 |
| 79 | 1−10.7iT−79T2 |
| 83 | 1−15.8T+83T2 |
| 89 | 1+3.94iT−89T2 |
| 97 | 1−8.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28718837474594195019096775498, −9.499312936267187978274478790564, −8.592384535622678917319266606737, −7.21819002777721775289708802232, −6.88624741141006407409826161059, −6.03742206803704338360754631077, −5.27924874069704078107152294118, −4.04635796927074233221216909370, −2.30569928391142649297529787300, −0.853091938055869321148336069514,
0.52970971591702678161680242371, 1.66655205768209936100384408262, 3.48713887503132056797990642323, 4.91988416082240105923491440859, 5.70785623240316560587641706742, 6.36675297799163314957922500135, 7.43389568244093916382121492152, 8.017650538476340565726848960437, 9.314912054397237174605545344245, 9.979580087196258398308353148089