Properties

Label 2-980-28.27-c1-0-62
Degree 22
Conductor 980980
Sign 0.09360.995i0.0936 - 0.995i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.431 − 1.34i)2-s − 2.73·3-s + (−1.62 + 1.16i)4-s i·5-s + (1.18 + 3.68i)6-s + (2.26 + 1.69i)8-s + 4.49·9-s + (−1.34 + 0.431i)10-s − 0.100i·11-s + (4.45 − 3.18i)12-s − 4.11i·13-s + 2.73i·15-s + (1.29 − 3.78i)16-s − 5.39i·17-s + (−1.93 − 6.05i)18-s − 7.45·19-s + ⋯
L(s)  = 1  + (−0.305 − 0.952i)2-s − 1.58·3-s + (−0.813 + 0.581i)4-s − 0.447i·5-s + (0.482 + 1.50i)6-s + (0.801 + 0.597i)8-s + 1.49·9-s + (−0.425 + 0.136i)10-s − 0.0302i·11-s + (1.28 − 0.918i)12-s − 1.14i·13-s + 0.706i·15-s + (0.324 − 0.945i)16-s − 1.30i·17-s + (−0.456 − 1.42i)18-s − 1.71·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.09360.995i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0936 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.09360.995i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0936 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.09360.995i0.0936 - 0.995i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(391,)\chi_{980} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.09360.995i)(2,\ 980,\ (\ :1/2),\ 0.0936 - 0.995i)

Particular Values

L(1)L(1) \approx 0.0159609+0.0145306i0.0159609 + 0.0145306i
L(12)L(\frac12) \approx 0.0159609+0.0145306i0.0159609 + 0.0145306i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.431+1.34i)T 1 + (0.431 + 1.34i)T
5 1+iT 1 + iT
7 1 1
good3 1+2.73T+3T2 1 + 2.73T + 3T^{2}
11 1+0.100iT11T2 1 + 0.100iT - 11T^{2}
13 1+4.11iT13T2 1 + 4.11iT - 13T^{2}
17 1+5.39iT17T2 1 + 5.39iT - 17T^{2}
19 1+7.45T+19T2 1 + 7.45T + 19T^{2}
23 11.50iT23T2 1 - 1.50iT - 23T^{2}
29 1+2.37T+29T2 1 + 2.37T + 29T^{2}
31 15.44T+31T2 1 - 5.44T + 31T^{2}
37 11.03T+37T2 1 - 1.03T + 37T^{2}
41 17.99iT41T2 1 - 7.99iT - 41T^{2}
43 1+7.04iT43T2 1 + 7.04iT - 43T^{2}
47 1+4.44T+47T2 1 + 4.44T + 47T^{2}
53 16.14T+53T2 1 - 6.14T + 53T^{2}
59 1+8.52T+59T2 1 + 8.52T + 59T^{2}
61 17.90iT61T2 1 - 7.90iT - 61T^{2}
67 10.109iT67T2 1 - 0.109iT - 67T^{2}
71 16.73iT71T2 1 - 6.73iT - 71T^{2}
73 16.14iT73T2 1 - 6.14iT - 73T^{2}
79 14.27iT79T2 1 - 4.27iT - 79T^{2}
83 1+6.50T+83T2 1 + 6.50T + 83T^{2}
89 1+3.19iT89T2 1 + 3.19iT - 89T^{2}
97 111.0iT97T2 1 - 11.0iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.715894917743391273712033004848, −8.683565046654615710599869089524, −7.80554704632048869726355063020, −6.71669237223918302558617976181, −5.63094307800189510559457409477, −4.94744332865852092403391246021, −4.12189405435643615181781047938, −2.66076770710514604013451107930, −1.08932325817906142941998688702, −0.01654873363547558612850072172, 1.72704745588461023320744729491, 4.07525684095318686190383268950, 4.68449435785633915520247434632, 5.85007132582902031942210715649, 6.39750799284345028197160857171, 6.85722922605407888362441904380, 8.005982374331299674038735516007, 8.897634822602480307847414937562, 9.944514214115670123752771964850, 10.66200280957688824501276178952

Graph of the ZZ-function along the critical line