L(s) = 1 | + (−0.431 − 1.34i)2-s − 2.73·3-s + (−1.62 + 1.16i)4-s − i·5-s + (1.18 + 3.68i)6-s + (2.26 + 1.69i)8-s + 4.49·9-s + (−1.34 + 0.431i)10-s − 0.100i·11-s + (4.45 − 3.18i)12-s − 4.11i·13-s + 2.73i·15-s + (1.29 − 3.78i)16-s − 5.39i·17-s + (−1.93 − 6.05i)18-s − 7.45·19-s + ⋯ |
L(s) = 1 | + (−0.305 − 0.952i)2-s − 1.58·3-s + (−0.813 + 0.581i)4-s − 0.447i·5-s + (0.482 + 1.50i)6-s + (0.801 + 0.597i)8-s + 1.49·9-s + (−0.425 + 0.136i)10-s − 0.0302i·11-s + (1.28 − 0.918i)12-s − 1.14i·13-s + 0.706i·15-s + (0.324 − 0.945i)16-s − 1.30i·17-s + (−0.456 − 1.42i)18-s − 1.71·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.0936−0.995i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.0936−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.0936−0.995i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.0936−0.995i)
|
Particular Values
L(1) |
≈ |
0.0159609+0.0145306i |
L(21) |
≈ |
0.0159609+0.0145306i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.431+1.34i)T |
| 5 | 1+iT |
| 7 | 1 |
good | 3 | 1+2.73T+3T2 |
| 11 | 1+0.100iT−11T2 |
| 13 | 1+4.11iT−13T2 |
| 17 | 1+5.39iT−17T2 |
| 19 | 1+7.45T+19T2 |
| 23 | 1−1.50iT−23T2 |
| 29 | 1+2.37T+29T2 |
| 31 | 1−5.44T+31T2 |
| 37 | 1−1.03T+37T2 |
| 41 | 1−7.99iT−41T2 |
| 43 | 1+7.04iT−43T2 |
| 47 | 1+4.44T+47T2 |
| 53 | 1−6.14T+53T2 |
| 59 | 1+8.52T+59T2 |
| 61 | 1−7.90iT−61T2 |
| 67 | 1−0.109iT−67T2 |
| 71 | 1−6.73iT−71T2 |
| 73 | 1−6.14iT−73T2 |
| 79 | 1−4.27iT−79T2 |
| 83 | 1+6.50T+83T2 |
| 89 | 1+3.19iT−89T2 |
| 97 | 1−11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.715894917743391273712033004848, −8.683565046654615710599869089524, −7.80554704632048869726355063020, −6.71669237223918302558617976181, −5.63094307800189510559457409477, −4.94744332865852092403391246021, −4.12189405435643615181781047938, −2.66076770710514604013451107930, −1.08932325817906142941998688702, −0.01654873363547558612850072172,
1.72704745588461023320744729491, 4.07525684095318686190383268950, 4.68449435785633915520247434632, 5.85007132582902031942210715649, 6.39750799284345028197160857171, 6.85722922605407888362441904380, 8.005982374331299674038735516007, 8.897634822602480307847414937562, 9.944514214115670123752771964850, 10.66200280957688824501276178952