L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)11-s + 13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)25-s − 27-s − 29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)47-s + (−0.499 + 0.866i)51-s + 0.999·55-s + (0.5 − 0.866i)65-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)11-s + 13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)25-s − 27-s − 29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)47-s + (−0.499 + 0.866i)51-s + 0.999·55-s + (0.5 − 0.866i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9729946514\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9729946514\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 2T + T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.750928811917439655782890720818, −9.278169488270330955037636894760, −8.341672129661015465440518538371, −7.33054238823988134626007731971, −6.57409837971363975042621195813, −5.83011220192201039323702967651, −4.86612330879583585596712118321, −3.84292403289306529142074353153, −2.10528977391486518003779400223, −1.11693489335356370797419942188,
1.86653269932265218967370641329, 3.39607395421607154023663064518, 4.05316488690105075065812475092, 5.35520324287051263023871333747, 6.05583563326882287863200091722, 6.75994113713995892889687209992, 7.978022282460619700836904918145, 8.915752765771908252737538815198, 9.727489314371706461840374461813, 10.53777644137331446862998771678