L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)11-s + 13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)25-s − 27-s − 29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)47-s + (−0.499 + 0.866i)51-s + 0.999·55-s + (0.5 − 0.866i)65-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 + 0.866i)11-s + 13-s − 0.999·15-s + (−0.5 − 0.866i)17-s + (−0.499 − 0.866i)25-s − 27-s − 29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)39-s + (−0.5 + 0.866i)47-s + (−0.499 + 0.866i)51-s + 0.999·55-s + (0.5 − 0.866i)65-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.0633+0.997i)Λ(1−s)
Λ(s)=(=(980s/2ΓC(s)L(s)(0.0633+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.0633+0.997i
|
Analytic conductor: |
0.489083 |
Root analytic conductor: |
0.699345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :0), 0.0633+0.997i)
|
Particular Values
L(21) |
≈ |
0.9729946514 |
L(21) |
≈ |
0.9729946514 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.5+0.866i)T |
| 7 | 1 |
good | 3 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T+T2 |
| 17 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−2T+T2 |
| 73 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+2T+T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.750928811917439655782890720818, −9.278169488270330955037636894760, −8.341672129661015465440518538371, −7.33054238823988134626007731971, −6.57409837971363975042621195813, −5.83011220192201039323702967651, −4.86612330879583585596712118321, −3.84292403289306529142074353153, −2.10528977391486518003779400223, −1.11693489335356370797419942188,
1.86653269932265218967370641329, 3.39607395421607154023663064518, 4.05316488690105075065812475092, 5.35520324287051263023871333747, 6.05583563326882287863200091722, 6.75994113713995892889687209992, 7.978022282460619700836904918145, 8.915752765771908252737538815198, 9.727489314371706461840374461813, 10.53777644137331446862998771678