Properties

Label 2-99-1.1-c1-0-2
Degree $2$
Conductor $99$
Sign $1$
Analytic cond. $0.790518$
Root an. cond. $0.889111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 5-s − 2·7-s − 2·10-s − 11-s + 4·13-s − 4·14-s − 4·16-s + 2·17-s − 2·20-s − 2·22-s + 23-s − 4·25-s + 8·26-s − 4·28-s + 7·31-s − 8·32-s + 4·34-s + 2·35-s + 3·37-s + 8·41-s − 6·43-s − 2·44-s + 2·46-s − 8·47-s − 3·49-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.447·5-s − 0.755·7-s − 0.632·10-s − 0.301·11-s + 1.10·13-s − 1.06·14-s − 16-s + 0.485·17-s − 0.447·20-s − 0.426·22-s + 0.208·23-s − 4/5·25-s + 1.56·26-s − 0.755·28-s + 1.25·31-s − 1.41·32-s + 0.685·34-s + 0.338·35-s + 0.493·37-s + 1.24·41-s − 0.914·43-s − 0.301·44-s + 0.294·46-s − 1.16·47-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99\)    =    \(3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(0.790518\)
Root analytic conductor: \(0.889111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684496332\)
\(L(\frac12)\) \(\approx\) \(1.684496332\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 5 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68040274047176229306789941909, −13.05532878430427737685314941779, −12.07025537765623530596257929043, −11.14136051051457299622132768480, −9.701226498296212058900989539920, −8.228854358433494441874279371750, −6.66503987304844816686807720890, −5.66407660024727617127120629681, −4.19085115174357929506261869806, −3.09000916592887094247460325417, 3.09000916592887094247460325417, 4.19085115174357929506261869806, 5.66407660024727617127120629681, 6.66503987304844816686807720890, 8.228854358433494441874279371750, 9.701226498296212058900989539920, 11.14136051051457299622132768480, 12.07025537765623530596257929043, 13.05532878430427737685314941779, 13.68040274047176229306789941909

Graph of the $Z$-function along the critical line