L(s) = 1 | + 2·2-s + 2·4-s − 5-s − 2·7-s − 2·10-s − 11-s + 4·13-s − 4·14-s − 4·16-s + 2·17-s − 2·20-s − 2·22-s + 23-s − 4·25-s + 8·26-s − 4·28-s + 7·31-s − 8·32-s + 4·34-s + 2·35-s + 3·37-s + 8·41-s − 6·43-s − 2·44-s + 2·46-s − 8·47-s − 3·49-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.447·5-s − 0.755·7-s − 0.632·10-s − 0.301·11-s + 1.10·13-s − 1.06·14-s − 16-s + 0.485·17-s − 0.447·20-s − 0.426·22-s + 0.208·23-s − 4/5·25-s + 1.56·26-s − 0.755·28-s + 1.25·31-s − 1.41·32-s + 0.685·34-s + 0.338·35-s + 0.493·37-s + 1.24·41-s − 0.914·43-s − 0.301·44-s + 0.294·46-s − 1.16·47-s − 3/7·49-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(99s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.684496332 |
L(21) |
≈ |
1.684496332 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+T |
good | 2 | 1−pT+pT2 |
| 5 | 1+T+pT2 |
| 7 | 1+2T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−7T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−8T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+5T+pT2 |
| 61 | 1−12T+pT2 |
| 67 | 1+7T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.68040274047176229306789941909, −13.05532878430427737685314941779, −12.07025537765623530596257929043, −11.14136051051457299622132768480, −9.701226498296212058900989539920, −8.228854358433494441874279371750, −6.66503987304844816686807720890, −5.66407660024727617127120629681, −4.19085115174357929506261869806, −3.09000916592887094247460325417,
3.09000916592887094247460325417, 4.19085115174357929506261869806, 5.66407660024727617127120629681, 6.66503987304844816686807720890, 8.228854358433494441874279371750, 9.701226498296212058900989539920, 11.14136051051457299622132768480, 12.07025537765623530596257929043, 13.05532878430427737685314941779, 13.68040274047176229306789941909