L(s) = 1 | + 5·2-s + 17·4-s + 14·5-s − 32·7-s + 45·8-s + 70·10-s + 11·11-s − 38·13-s − 160·14-s + 89·16-s + 2·17-s + 72·19-s + 238·20-s + 55·22-s − 68·23-s + 71·25-s − 190·26-s − 544·28-s + 54·29-s − 152·31-s + 85·32-s + 10·34-s − 448·35-s + 174·37-s + 360·38-s + 630·40-s − 94·41-s + ⋯ |
L(s) = 1 | + 1.76·2-s + 17/8·4-s + 1.25·5-s − 1.72·7-s + 1.98·8-s + 2.21·10-s + 0.301·11-s − 0.810·13-s − 3.05·14-s + 1.39·16-s + 0.0285·17-s + 0.869·19-s + 2.66·20-s + 0.533·22-s − 0.616·23-s + 0.567·25-s − 1.43·26-s − 3.67·28-s + 0.345·29-s − 0.880·31-s + 0.469·32-s + 0.0504·34-s − 2.16·35-s + 0.773·37-s + 1.53·38-s + 2.49·40-s − 0.358·41-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(99s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.118740257 |
L(21) |
≈ |
4.118740257 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1−pT |
good | 2 | 1−5T+p3T2 |
| 5 | 1−14T+p3T2 |
| 7 | 1+32T+p3T2 |
| 13 | 1+38T+p3T2 |
| 17 | 1−2T+p3T2 |
| 19 | 1−72T+p3T2 |
| 23 | 1+68T+p3T2 |
| 29 | 1−54T+p3T2 |
| 31 | 1+152T+p3T2 |
| 37 | 1−174T+p3T2 |
| 41 | 1+94T+p3T2 |
| 43 | 1+528T+p3T2 |
| 47 | 1−340T+p3T2 |
| 53 | 1−438T+p3T2 |
| 59 | 1+20T+p3T2 |
| 61 | 1−570T+p3T2 |
| 67 | 1+460T+p3T2 |
| 71 | 1−1092T+p3T2 |
| 73 | 1−562T+p3T2 |
| 79 | 1+16T+p3T2 |
| 83 | 1+372T+p3T2 |
| 89 | 1−966T+p3T2 |
| 97 | 1+526T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.43434910137316612141022374741, −12.71125030925909594058041984741, −11.83235099854909654277750922131, −10.21423808108031227871944916599, −9.454680857221027075949373686511, −7.02366367103417308769025902453, −6.18528858126133271259285952533, −5.29499404212907390026734482434, −3.60958730236608261490424709415, −2.40684343637818605205952601774,
2.40684343637818605205952601774, 3.60958730236608261490424709415, 5.29499404212907390026734482434, 6.18528858126133271259285952533, 7.02366367103417308769025902453, 9.454680857221027075949373686511, 10.21423808108031227871944916599, 11.83235099854909654277750922131, 12.71125030925909594058041984741, 13.43434910137316612141022374741