L(s) = 1 | + (−0.523 + 0.380i)2-s + (−2.34 + 7.21i)4-s + (−9.01 − 6.54i)5-s + (8.07 − 24.8i)7-s + (−3.11 − 9.58i)8-s + 7.20·10-s + (36.0 − 5.31i)11-s + (43.2 − 31.4i)13-s + (5.22 + 16.0i)14-s + (−43.7 − 31.8i)16-s + (18.9 + 13.7i)17-s + (−21.8 − 67.3i)19-s + (68.3 − 49.6i)20-s + (−16.8 + 16.5i)22-s − 164.·23-s + ⋯ |
L(s) = 1 | + (−0.185 + 0.134i)2-s + (−0.292 + 0.901i)4-s + (−0.806 − 0.585i)5-s + (0.436 − 1.34i)7-s + (−0.137 − 0.423i)8-s + 0.227·10-s + (0.989 − 0.145i)11-s + (0.923 − 0.671i)13-s + (0.0997 + 0.307i)14-s + (−0.684 − 0.497i)16-s + (0.270 + 0.196i)17-s + (−0.264 − 0.813i)19-s + (0.764 − 0.555i)20-s + (−0.163 + 0.159i)22-s − 1.48·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.422 + 0.906i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.422 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.891548 - 0.567822i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.891548 - 0.567822i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-36.0 + 5.31i)T \) |
good | 2 | \( 1 + (0.523 - 0.380i)T + (2.47 - 7.60i)T^{2} \) |
| 5 | \( 1 + (9.01 + 6.54i)T + (38.6 + 118. i)T^{2} \) |
| 7 | \( 1 + (-8.07 + 24.8i)T + (-277. - 201. i)T^{2} \) |
| 13 | \( 1 + (-43.2 + 31.4i)T + (678. - 2.08e3i)T^{2} \) |
| 17 | \( 1 + (-18.9 - 13.7i)T + (1.51e3 + 4.67e3i)T^{2} \) |
| 19 | \( 1 + (21.8 + 67.3i)T + (-5.54e3 + 4.03e3i)T^{2} \) |
| 23 | \( 1 + 164.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-67.5 + 207. i)T + (-1.97e4 - 1.43e4i)T^{2} \) |
| 31 | \( 1 + (-62.0 + 45.0i)T + (9.20e3 - 2.83e4i)T^{2} \) |
| 37 | \( 1 + (87.5 - 269. i)T + (-4.09e4 - 2.97e4i)T^{2} \) |
| 41 | \( 1 + (1.50 + 4.61i)T + (-5.57e4 + 4.05e4i)T^{2} \) |
| 43 | \( 1 + 333.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-121. - 374. i)T + (-8.39e4 + 6.10e4i)T^{2} \) |
| 53 | \( 1 + (-123. + 89.3i)T + (4.60e4 - 1.41e5i)T^{2} \) |
| 59 | \( 1 + (-237. + 729. i)T + (-1.66e5 - 1.20e5i)T^{2} \) |
| 61 | \( 1 + (-287. - 209. i)T + (7.01e4 + 2.15e5i)T^{2} \) |
| 67 | \( 1 - 102.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-504. - 366. i)T + (1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (95.7 - 294. i)T + (-3.14e5 - 2.28e5i)T^{2} \) |
| 79 | \( 1 + (-517. + 375. i)T + (1.52e5 - 4.68e5i)T^{2} \) |
| 83 | \( 1 + (-233. - 169. i)T + (1.76e5 + 5.43e5i)T^{2} \) |
| 89 | \( 1 + 184.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (515. - 374. i)T + (2.82e5 - 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.28724106722898979139027883926, −12.10151423936794699998314980753, −11.30349495104718837014735216023, −9.900411016062100504856337676633, −8.368351166543914633221355405535, −7.970116669740604855620791670873, −6.60867442415890543126393879583, −4.40684819299942353704182234403, −3.72079209624106745531914731642, −0.69565277785851343745301982854,
1.78762179537612582089628097815, 3.88800350485130563501896733421, 5.52186835758060432085235190682, 6.63192604595208001595682756831, 8.353457869854073644136944264129, 9.153814683935868282834850639294, 10.45672313848952541301357190913, 11.56604369330660049035750173033, 12.11963172960743263817263301555, 13.96730565969226906137686398167