L(s) = 1 | + (−0.523 + 0.380i)2-s + (−2.34 + 7.21i)4-s + (−9.01 − 6.54i)5-s + (8.07 − 24.8i)7-s + (−3.11 − 9.58i)8-s + 7.20·10-s + (36.0 − 5.31i)11-s + (43.2 − 31.4i)13-s + (5.22 + 16.0i)14-s + (−43.7 − 31.8i)16-s + (18.9 + 13.7i)17-s + (−21.8 − 67.3i)19-s + (68.3 − 49.6i)20-s + (−16.8 + 16.5i)22-s − 164.·23-s + ⋯ |
L(s) = 1 | + (−0.185 + 0.134i)2-s + (−0.292 + 0.901i)4-s + (−0.806 − 0.585i)5-s + (0.436 − 1.34i)7-s + (−0.137 − 0.423i)8-s + 0.227·10-s + (0.989 − 0.145i)11-s + (0.923 − 0.671i)13-s + (0.0997 + 0.307i)14-s + (−0.684 − 0.497i)16-s + (0.270 + 0.196i)17-s + (−0.264 − 0.813i)19-s + (0.764 − 0.555i)20-s + (−0.163 + 0.159i)22-s − 1.48·23-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(0.422+0.906i)Λ(4−s)
Λ(s)=(=(99s/2ΓC(s+3/2)L(s)(0.422+0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
0.422+0.906i
|
Analytic conductor: |
5.84118 |
Root analytic conductor: |
2.41685 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :3/2), 0.422+0.906i)
|
Particular Values
L(2) |
≈ |
0.891548−0.567822i |
L(21) |
≈ |
0.891548−0.567822i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−36.0+5.31i)T |
good | 2 | 1+(0.523−0.380i)T+(2.47−7.60i)T2 |
| 5 | 1+(9.01+6.54i)T+(38.6+118.i)T2 |
| 7 | 1+(−8.07+24.8i)T+(−277.−201.i)T2 |
| 13 | 1+(−43.2+31.4i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−18.9−13.7i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(21.8+67.3i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+164.T+1.21e4T2 |
| 29 | 1+(−67.5+207.i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−62.0+45.0i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(87.5−269.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(1.50+4.61i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+333.T+7.95e4T2 |
| 47 | 1+(−121.−374.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−123.+89.3i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−237.+729.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−287.−209.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−102.T+3.00e5T2 |
| 71 | 1+(−504.−366.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(95.7−294.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−517.+375.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−233.−169.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+184.T+7.04e5T2 |
| 97 | 1+(515.−374.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.28724106722898979139027883926, −12.10151423936794699998314980753, −11.30349495104718837014735216023, −9.900411016062100504856337676633, −8.368351166543914633221355405535, −7.970116669740604855620791670873, −6.60867442415890543126393879583, −4.40684819299942353704182234403, −3.72079209624106745531914731642, −0.69565277785851343745301982854,
1.78762179537612582089628097815, 3.88800350485130563501896733421, 5.52186835758060432085235190682, 6.63192604595208001595682756831, 8.353457869854073644136944264129, 9.153814683935868282834850639294, 10.45672313848952541301357190913, 11.56604369330660049035750173033, 12.11963172960743263817263301555, 13.96730565969226906137686398167