L(s) = 1 | + (−0.309 − 0.224i)2-s + (−0.572 − 1.76i)4-s + (1.30 − 0.951i)5-s + (−0.309 − 0.951i)7-s + (−0.454 + 1.40i)8-s − 0.618·10-s + (2.19 − 2.48i)11-s + (3.42 + 2.48i)13-s + (−0.118 + 0.363i)14-s + (−2.54 + 1.84i)16-s + (−6.35 + 4.61i)17-s + (−0.263 + 0.812i)19-s + (−2.42 − 1.76i)20-s + (−1.23 + 0.277i)22-s + 4.23·23-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.158i)2-s + (−0.286 − 0.881i)4-s + (0.585 − 0.425i)5-s + (−0.116 − 0.359i)7-s + (−0.160 + 0.495i)8-s − 0.195·10-s + (0.660 − 0.750i)11-s + (0.950 + 0.690i)13-s + (−0.0315 + 0.0970i)14-s + (−0.636 + 0.462i)16-s + (−1.54 + 1.11i)17-s + (−0.0605 + 0.186i)19-s + (−0.542 − 0.394i)20-s + (−0.263 + 0.0591i)22-s + 0.883·23-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(0.530+0.847i)Λ(2−s)
Λ(s)=(=(99s/2ΓC(s+1/2)L(s)(0.530+0.847i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
0.530+0.847i
|
Analytic conductor: |
0.790518 |
Root analytic conductor: |
0.889111 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :1/2), 0.530+0.847i)
|
Particular Values
L(1) |
≈ |
0.809464−0.448545i |
L(21) |
≈ |
0.809464−0.448545i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−2.19+2.48i)T |
good | 2 | 1+(0.309+0.224i)T+(0.618+1.90i)T2 |
| 5 | 1+(−1.30+0.951i)T+(1.54−4.75i)T2 |
| 7 | 1+(0.309+0.951i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−3.42−2.48i)T+(4.01+12.3i)T2 |
| 17 | 1+(6.35−4.61i)T+(5.25−16.1i)T2 |
| 19 | 1+(0.263−0.812i)T+(−15.3−11.1i)T2 |
| 23 | 1−4.23T+23T2 |
| 29 | 1+(−1.85−5.70i)T+(−23.4+17.0i)T2 |
| 31 | 1+(4.11+2.99i)T+(9.57+29.4i)T2 |
| 37 | 1+(0.545+1.67i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−1.30+4.02i)T+(−33.1−24.0i)T2 |
| 43 | 1−6.70T+43T2 |
| 47 | 1+(0.336−1.03i)T+(−38.0−27.6i)T2 |
| 53 | 1+(2.11+1.53i)T+(16.3+50.4i)T2 |
| 59 | 1+(2.97+9.14i)T+(−47.7+34.6i)T2 |
| 61 | 1+(6.92−5.03i)T+(18.8−58.0i)T2 |
| 67 | 1+4.85T+67T2 |
| 71 | 1+(4.30−3.13i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.38−7.33i)T+(−59.0+42.9i)T2 |
| 79 | 1+(8.89+6.46i)T+(24.4+75.1i)T2 |
| 83 | 1+(6.04−4.39i)T+(25.6−78.9i)T2 |
| 89 | 1−3.76T+89T2 |
| 97 | 1+(0.927+0.673i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.70470492580803328094639729031, −12.97189447599362422994810679148, −11.23293497331166116966124842986, −10.64593736831630152959543672430, −9.159105410768445855660326247727, −8.783123492788275939600923885725, −6.64230974815025429215943007626, −5.68557377996537153024881361506, −4.12309431720945309107310287530, −1.54716083591508772365809195642,
2.75797128229835304904206030614, 4.44893809068220476898388007449, 6.27743133691307765662514150910, 7.31212599076008857144553093446, 8.748218401930449856053425731779, 9.475806944679677370225573928854, 10.90290839657879756723029561217, 12.04727202776054269509203972594, 13.12589318711766496610486109219, 13.85404142267583260855248494458