L(s) = 1 | + (−0.309 − 0.224i)2-s + (−0.572 − 1.76i)4-s + (1.30 − 0.951i)5-s + (−0.309 − 0.951i)7-s + (−0.454 + 1.40i)8-s − 0.618·10-s + (2.19 − 2.48i)11-s + (3.42 + 2.48i)13-s + (−0.118 + 0.363i)14-s + (−2.54 + 1.84i)16-s + (−6.35 + 4.61i)17-s + (−0.263 + 0.812i)19-s + (−2.42 − 1.76i)20-s + (−1.23 + 0.277i)22-s + 4.23·23-s + ⋯ |
L(s) = 1 | + (−0.218 − 0.158i)2-s + (−0.286 − 0.881i)4-s + (0.585 − 0.425i)5-s + (−0.116 − 0.359i)7-s + (−0.160 + 0.495i)8-s − 0.195·10-s + (0.660 − 0.750i)11-s + (0.950 + 0.690i)13-s + (−0.0315 + 0.0970i)14-s + (−0.636 + 0.462i)16-s + (−1.54 + 1.11i)17-s + (−0.0605 + 0.186i)19-s + (−0.542 − 0.394i)20-s + (−0.263 + 0.0591i)22-s + 0.883·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.809464 - 0.448545i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.809464 - 0.448545i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (-2.19 + 2.48i)T \) |
good | 2 | \( 1 + (0.309 + 0.224i)T + (0.618 + 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.30 + 0.951i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.309 + 0.951i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.42 - 2.48i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (6.35 - 4.61i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.263 - 0.812i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.23T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 - 5.70i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.11 + 2.99i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.545 + 1.67i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.30 + 4.02i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 6.70T + 43T^{2} \) |
| 47 | \( 1 + (0.336 - 1.03i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (2.11 + 1.53i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.97 + 9.14i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (6.92 - 5.03i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 4.85T + 67T^{2} \) |
| 71 | \( 1 + (4.30 - 3.13i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.38 - 7.33i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (8.89 + 6.46i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (6.04 - 4.39i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 3.76T + 89T^{2} \) |
| 97 | \( 1 + (0.927 + 0.673i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.70470492580803328094639729031, −12.97189447599362422994810679148, −11.23293497331166116966124842986, −10.64593736831630152959543672430, −9.159105410768445855660326247727, −8.783123492788275939600923885725, −6.64230974815025429215943007626, −5.68557377996537153024881361506, −4.12309431720945309107310287530, −1.54716083591508772365809195642,
2.75797128229835304904206030614, 4.44893809068220476898388007449, 6.27743133691307765662514150910, 7.31212599076008857144553093446, 8.748218401930449856053425731779, 9.475806944679677370225573928854, 10.90290839657879756723029561217, 12.04727202776054269509203972594, 13.12589318711766496610486109219, 13.85404142267583260855248494458