L(s) = 1 | − 1.73·2-s + 0.999·4-s + 1.41i·5-s + 2.44i·7-s + 1.73·8-s − 2.44i·10-s + (1.73 + 2.82i)11-s + 4.89i·13-s − 4.24i·14-s − 5·16-s − 7.34i·19-s + 1.41i·20-s + (−2.99 − 4.89i)22-s − 2.82i·23-s + 2.99·25-s − 8.48i·26-s + ⋯ |
L(s) = 1 | − 1.22·2-s + 0.499·4-s + 0.632i·5-s + 0.925i·7-s + 0.612·8-s − 0.774i·10-s + (0.522 + 0.852i)11-s + 1.35i·13-s − 1.13i·14-s − 1.25·16-s − 1.68i·19-s + 0.316i·20-s + (−0.639 − 1.04i)22-s − 0.589i·23-s + 0.599·25-s − 1.66i·26-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(0.394−0.918i)Λ(2−s)
Λ(s)=(=(99s/2ΓC(s+1/2)L(s)(0.394−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
0.394−0.918i
|
Analytic conductor: |
0.790518 |
Root analytic conductor: |
0.889111 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(98,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :1/2), 0.394−0.918i)
|
Particular Values
L(1) |
≈ |
0.444946+0.293090i |
L(21) |
≈ |
0.444946+0.293090i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−1.73−2.82i)T |
good | 2 | 1+1.73T+2T2 |
| 5 | 1−1.41iT−5T2 |
| 7 | 1−2.44iT−7T2 |
| 13 | 1−4.89iT−13T2 |
| 17 | 1+17T2 |
| 19 | 1+7.34iT−19T2 |
| 23 | 1+2.82iT−23T2 |
| 29 | 1+6.92T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1−8T+37T2 |
| 41 | 1−6.92T+41T2 |
| 43 | 1−2.44iT−43T2 |
| 47 | 1+2.82iT−47T2 |
| 53 | 1−9.89iT−53T2 |
| 59 | 1+11.3iT−59T2 |
| 61 | 1+4.89iT−61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+2.82iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+12.2iT−79T2 |
| 83 | 1−13.8T+83T2 |
| 89 | 1+7.07iT−89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.32168190506878386511217532287, −12.95867149640898152762588436825, −11.60951141270858407331611013609, −10.81890712287236672964724032104, −9.293513445353055567601579767448, −9.121893942793375276437921306793, −7.47898061501936816669013541698, −6.55510790933723557155654578383, −4.56921065867110073474598274548, −2.21566271073912486023524403756,
1.03600880771872794815330881490, 3.88675360045157456971255696593, 5.67625452116918334045905826677, 7.46487163945053998074752161708, 8.231727043870037728492129332356, 9.324434967429838102217158277205, 10.32622616838747214066777289003, 11.17186905328940756867896011195, 12.71138264788252203224822483288, 13.60771438649453582831865666787