L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (−1.38 − 4.27i)7-s + (0.309 − 0.951i)8-s + 10-s + (−3.28 + 0.458i)11-s + (1.88 + 1.37i)13-s + (−1.38 + 4.27i)14-s + (−0.809 + 0.587i)16-s + (−4.17 + 3.03i)17-s + (−1.85 + 5.71i)19-s + (−0.809 − 0.587i)20-s + (2.92 + 1.55i)22-s + 8.88·23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.154 + 0.475i)4-s + (−0.361 + 0.262i)5-s + (−0.524 − 1.61i)7-s + (0.109 − 0.336i)8-s + 0.316·10-s + (−0.990 + 0.138i)11-s + (0.523 + 0.380i)13-s + (−0.370 + 1.14i)14-s + (−0.202 + 0.146i)16-s + (−1.01 + 0.735i)17-s + (−0.426 + 1.31i)19-s + (−0.180 − 0.131i)20-s + (0.624 + 0.332i)22-s + 1.85·23-s + ⋯ |
Λ(s)=(=(990s/2ΓC(s)L(s)(0.151−0.988i)Λ(2−s)
Λ(s)=(=(990s/2ΓC(s+1/2)L(s)(0.151−0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
990
= 2⋅32⋅5⋅11
|
Sign: |
0.151−0.988i
|
Analytic conductor: |
7.90518 |
Root analytic conductor: |
2.81161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ990(631,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 990, ( :1/2), 0.151−0.988i)
|
Particular Values
L(1) |
≈ |
0.353597+0.303671i |
L(21) |
≈ |
0.353597+0.303671i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809+0.587i)T |
| 3 | 1 |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1+(3.28−0.458i)T |
good | 7 | 1+(1.38+4.27i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.88−1.37i)T+(4.01+12.3i)T2 |
| 17 | 1+(4.17−3.03i)T+(5.25−16.1i)T2 |
| 19 | 1+(1.85−5.71i)T+(−15.3−11.1i)T2 |
| 23 | 1−8.88T+23T2 |
| 29 | 1+(2.34+7.21i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−0.897−0.651i)T+(9.57+29.4i)T2 |
| 37 | 1+(−2.45−7.54i)T+(−29.9+21.7i)T2 |
| 41 | 1+(2.95−9.10i)T+(−33.1−24.0i)T2 |
| 43 | 1+0.0785T+43T2 |
| 47 | 1+(0.896−2.76i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−0.602−0.437i)T+(16.3+50.4i)T2 |
| 59 | 1+(−1.64−5.06i)T+(−47.7+34.6i)T2 |
| 61 | 1+(12.5−9.08i)T+(18.8−58.0i)T2 |
| 67 | 1+1.67T+67T2 |
| 71 | 1+(−7.72+5.61i)T+(21.9−67.5i)T2 |
| 73 | 1+(−3.38−10.4i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−4.42−3.21i)T+(24.4+75.1i)T2 |
| 83 | 1+(6.47−4.70i)T+(25.6−78.9i)T2 |
| 89 | 1−7.41T+89T2 |
| 97 | 1+(4.64+3.37i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28840346845504611300372160230, −9.568576961660428673764455471810, −8.395299372906137965665764024342, −7.79114418331688147440454057795, −6.93301672151967139268956120306, −6.22960014362624463307190883006, −4.56079409675200606682196288586, −3.84663080501607018605792756614, −2.83287652170699657269273888885, −1.27924752292206038614556109869,
0.27382336516234594451699112795, 2.29042448309726141844208487387, 3.14990111290861543625151186806, 4.95513074151439573758436231695, 5.40185382953411459858825010442, 6.52643714624003449604789191338, 7.26146177854550866726726496748, 8.372455242414219262953993115379, 9.060356575173754107492575216650, 9.267858814954989440661181077946