L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−0.309 + 0.951i)8-s + 10-s + (3.04 + 1.31i)11-s + (1.11 + 0.812i)13-s + (−0.809 + 0.587i)16-s + (−1.30 + 0.951i)17-s + (0.618 − 1.90i)19-s + (0.809 + 0.587i)20-s + (1.69 + 2.85i)22-s + 4.85·23-s + (0.309 − 0.951i)25-s + (0.427 + 1.31i)26-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−0.109 + 0.336i)8-s + 0.316·10-s + (0.918 + 0.396i)11-s + (0.310 + 0.225i)13-s + (−0.202 + 0.146i)16-s + (−0.317 + 0.230i)17-s + (0.141 − 0.436i)19-s + (0.180 + 0.131i)20-s + (0.360 + 0.608i)22-s + 1.01·23-s + (0.0618 − 0.190i)25-s + (0.0837 + 0.257i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.25221 + 1.05060i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.25221 + 1.05060i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-3.04 - 1.31i)T \) |
good | 7 | \( 1 + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.11 - 0.812i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.30 - 0.951i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.618 + 1.90i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.85T + 23T^{2} \) |
| 29 | \( 1 + (-2.04 - 6.29i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.35 - 2.43i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.11 + 6.51i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.14 - 3.52i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 2.85T + 43T^{2} \) |
| 47 | \( 1 + (0.336 - 1.03i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.85 - 6.43i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.354 - 1.08i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.23 + 4.53i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 12.6T + 67T^{2} \) |
| 71 | \( 1 + (8.85 - 6.43i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (9.78 + 7.10i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (0.618 - 0.449i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 4.47T + 89T^{2} \) |
| 97 | \( 1 + (7.47 + 5.42i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08963418148168602374785554811, −8.970254968767420111117263601741, −8.665694681036309870192591120905, −7.25407263594069839836293448993, −6.74893956463561392743672309671, −5.78886987215884889647588878463, −4.86566336007610893638049635905, −4.03929999493829922005524602986, −2.87313905575613649903829905464, −1.45119008401616600152855906216,
1.14665834434289563582481104869, 2.50918357540366020083343978175, 3.51980692524188889470907718947, 4.47004597974096156049519721191, 5.56283835649289482379076930287, 6.33384742649519275826097155349, 7.09858510615976771371242110813, 8.338912518341349291336864531763, 9.163671975780853956982685755944, 10.03199363793961048408334808790