L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−0.309 + 0.951i)8-s + 10-s + (3.04 + 1.31i)11-s + (1.11 + 0.812i)13-s + (−0.809 + 0.587i)16-s + (−1.30 + 0.951i)17-s + (0.618 − 1.90i)19-s + (0.809 + 0.587i)20-s + (1.69 + 2.85i)22-s + 4.85·23-s + (0.309 − 0.951i)25-s + (0.427 + 1.31i)26-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−0.109 + 0.336i)8-s + 0.316·10-s + (0.918 + 0.396i)11-s + (0.310 + 0.225i)13-s + (−0.202 + 0.146i)16-s + (−0.317 + 0.230i)17-s + (0.141 − 0.436i)19-s + (0.180 + 0.131i)20-s + (0.360 + 0.608i)22-s + 1.01·23-s + (0.0618 − 0.190i)25-s + (0.0837 + 0.257i)26-s + ⋯ |
Λ(s)=(=(990s/2ΓC(s)L(s)(0.642−0.766i)Λ(2−s)
Λ(s)=(=(990s/2ΓC(s+1/2)L(s)(0.642−0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
990
= 2⋅32⋅5⋅11
|
Sign: |
0.642−0.766i
|
Analytic conductor: |
7.90518 |
Root analytic conductor: |
2.81161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ990(631,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 990, ( :1/2), 0.642−0.766i)
|
Particular Values
L(1) |
≈ |
2.25221+1.05060i |
L(21) |
≈ |
2.25221+1.05060i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1 |
| 5 | 1+(−0.809+0.587i)T |
| 11 | 1+(−3.04−1.31i)T |
good | 7 | 1+(−5.66+4.11i)T2 |
| 13 | 1+(−1.11−0.812i)T+(4.01+12.3i)T2 |
| 17 | 1+(1.30−0.951i)T+(5.25−16.1i)T2 |
| 19 | 1+(−0.618+1.90i)T+(−15.3−11.1i)T2 |
| 23 | 1−4.85T+23T2 |
| 29 | 1+(−2.04−6.29i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−3.35−2.43i)T+(9.57+29.4i)T2 |
| 37 | 1+(2.11+6.51i)T+(−29.9+21.7i)T2 |
| 41 | 1+(1.14−3.52i)T+(−33.1−24.0i)T2 |
| 43 | 1+2.85T+43T2 |
| 47 | 1+(0.336−1.03i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−8.85−6.43i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.354−1.08i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−6.23+4.53i)T+(18.8−58.0i)T2 |
| 67 | 1+12.6T+67T2 |
| 71 | 1+(8.85−6.43i)T+(21.9−67.5i)T2 |
| 73 | 1+(−59.0+42.9i)T2 |
| 79 | 1+(9.78+7.10i)T+(24.4+75.1i)T2 |
| 83 | 1+(0.618−0.449i)T+(25.6−78.9i)T2 |
| 89 | 1−4.47T+89T2 |
| 97 | 1+(7.47+5.42i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08963418148168602374785554811, −8.970254968767420111117263601741, −8.665694681036309870192591120905, −7.25407263594069839836293448993, −6.74893956463561392743672309671, −5.78886987215884889647588878463, −4.86566336007610893638049635905, −4.03929999493829922005524602986, −2.87313905575613649903829905464, −1.45119008401616600152855906216,
1.14665834434289563582481104869, 2.50918357540366020083343978175, 3.51980692524188889470907718947, 4.47004597974096156049519721191, 5.56283835649289482379076930287, 6.33384742649519275826097155349, 7.09858510615976771371242110813, 8.338912518341349291336864531763, 9.163671975780853956982685755944, 10.03199363793961048408334808790