L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 + 2.48i)7-s + (−0.309 + 0.951i)8-s − 10-s + (2.54 − 2.12i)11-s + (1.30 + 0.951i)13-s + (−0.809 + 2.48i)14-s + (−0.809 + 0.587i)16-s + (−4.23 + 3.07i)17-s + (−1.26 + 3.88i)19-s + (−0.809 − 0.587i)20-s + (3.30 − 0.224i)22-s − 0.145·23-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.154 + 0.475i)4-s + (−0.361 + 0.262i)5-s + (0.305 + 0.941i)7-s + (−0.109 + 0.336i)8-s − 0.316·10-s + (0.767 − 0.641i)11-s + (0.363 + 0.263i)13-s + (−0.216 + 0.665i)14-s + (−0.202 + 0.146i)16-s + (−1.02 + 0.746i)17-s + (−0.289 + 0.892i)19-s + (−0.180 − 0.131i)20-s + (0.705 − 0.0478i)22-s − 0.0304·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.394 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08920 + 1.65324i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08920 + 1.65324i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (-2.54 + 2.12i)T \) |
good | 7 | \( 1 + (-0.809 - 2.48i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 0.951i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (4.23 - 3.07i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.26 - 3.88i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 0.145T + 23T^{2} \) |
| 29 | \( 1 + (-0.381 - 1.17i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.85 - 4.25i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.263 + 0.812i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.572 + 1.76i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 9.23T + 43T^{2} \) |
| 47 | \( 1 + (3.5 - 10.7i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.736 - 0.534i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (0.736 + 2.26i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.23 - 5.25i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 0.763T + 67T^{2} \) |
| 71 | \( 1 + (-10.7 + 7.77i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.527 + 1.62i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.23 - 0.898i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-12.7 + 9.23i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 12.0T + 89T^{2} \) |
| 97 | \( 1 + (-9.70 - 7.05i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42185018162458223655979563220, −9.077966971646245942884300326976, −8.545151239372250503868021675802, −7.80325616394896683522593331056, −6.44671531535544400556376120123, −6.24132083384146868666677256804, −5.02675774167075249182505265353, −4.06659721110152440853356882766, −3.15257291270504479364362388752, −1.81777555606761575232908817199,
0.77597216124597212794817646144, 2.18135969184387473494269605891, 3.55077765298114147027986070881, 4.43090331516394958823757474460, 4.96068994705655169139085054624, 6.44125587295255857430542522984, 7.00187376665692927817341222094, 8.029873168600945726767336305283, 9.007647835703675106482933507162, 9.850323080719404566839989992066