L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.809 + 2.48i)7-s + (−0.309 + 0.951i)8-s − 10-s + (2.54 − 2.12i)11-s + (1.30 + 0.951i)13-s + (−0.809 + 2.48i)14-s + (−0.809 + 0.587i)16-s + (−4.23 + 3.07i)17-s + (−1.26 + 3.88i)19-s + (−0.809 − 0.587i)20-s + (3.30 − 0.224i)22-s − 0.145·23-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (0.154 + 0.475i)4-s + (−0.361 + 0.262i)5-s + (0.305 + 0.941i)7-s + (−0.109 + 0.336i)8-s − 0.316·10-s + (0.767 − 0.641i)11-s + (0.363 + 0.263i)13-s + (−0.216 + 0.665i)14-s + (−0.202 + 0.146i)16-s + (−1.02 + 0.746i)17-s + (−0.289 + 0.892i)19-s + (−0.180 − 0.131i)20-s + (0.705 − 0.0478i)22-s − 0.0304·23-s + ⋯ |
Λ(s)=(=(990s/2ΓC(s)L(s)(−0.394−0.918i)Λ(2−s)
Λ(s)=(=(990s/2ΓC(s+1/2)L(s)(−0.394−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
990
= 2⋅32⋅5⋅11
|
Sign: |
−0.394−0.918i
|
Analytic conductor: |
7.90518 |
Root analytic conductor: |
2.81161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ990(631,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 990, ( :1/2), −0.394−0.918i)
|
Particular Values
L(1) |
≈ |
1.08920+1.65324i |
L(21) |
≈ |
1.08920+1.65324i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 3 | 1 |
| 5 | 1+(0.809−0.587i)T |
| 11 | 1+(−2.54+2.12i)T |
good | 7 | 1+(−0.809−2.48i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.30−0.951i)T+(4.01+12.3i)T2 |
| 17 | 1+(4.23−3.07i)T+(5.25−16.1i)T2 |
| 19 | 1+(1.26−3.88i)T+(−15.3−11.1i)T2 |
| 23 | 1+0.145T+23T2 |
| 29 | 1+(−0.381−1.17i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−5.85−4.25i)T+(9.57+29.4i)T2 |
| 37 | 1+(0.263+0.812i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−0.572+1.76i)T+(−33.1−24.0i)T2 |
| 43 | 1+9.23T+43T2 |
| 47 | 1+(3.5−10.7i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−0.736−0.534i)T+(16.3+50.4i)T2 |
| 59 | 1+(0.736+2.26i)T+(−47.7+34.6i)T2 |
| 61 | 1+(7.23−5.25i)T+(18.8−58.0i)T2 |
| 67 | 1−0.763T+67T2 |
| 71 | 1+(−10.7+7.77i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.527+1.62i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−1.23−0.898i)T+(24.4+75.1i)T2 |
| 83 | 1+(−12.7+9.23i)T+(25.6−78.9i)T2 |
| 89 | 1−12.0T+89T2 |
| 97 | 1+(−9.70−7.05i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42185018162458223655979563220, −9.077966971646245942884300326976, −8.545151239372250503868021675802, −7.80325616394896683522593331056, −6.44671531535544400556376120123, −6.24132083384146868666677256804, −5.02675774167075249182505265353, −4.06659721110152440853356882766, −3.15257291270504479364362388752, −1.81777555606761575232908817199,
0.77597216124597212794817646144, 2.18135969184387473494269605891, 3.55077765298114147027986070881, 4.43090331516394958823757474460, 4.96068994705655169139085054624, 6.44125587295255857430542522984, 7.00187376665692927817341222094, 8.029873168600945726767336305283, 9.007647835703675106482933507162, 9.850323080719404566839989992066