Properties

Label 2-9984-1.1-c1-0-0
Degree $2$
Conductor $9984$
Sign $1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 0.452·5-s − 4.42·7-s + 9-s − 4.87·11-s − 13-s − 0.452·15-s + 0.228·17-s − 3.65·19-s + 4.42·21-s − 4.47·23-s − 4.79·25-s − 27-s + 4.76·29-s − 4.42·31-s + 4.87·33-s − 2·35-s − 4.47·37-s + 39-s − 5.23·41-s + 4.22·43-s + 0.452·45-s − 0.400·47-s + 12.5·49-s − 0.228·51-s − 10.7·53-s − 2.20·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.202·5-s − 1.67·7-s + 0.333·9-s − 1.46·11-s − 0.277·13-s − 0.116·15-s + 0.0553·17-s − 0.838·19-s + 0.964·21-s − 0.932·23-s − 0.959·25-s − 0.192·27-s + 0.884·29-s − 0.793·31-s + 0.848·33-s − 0.338·35-s − 0.735·37-s + 0.160·39-s − 0.818·41-s + 0.644·43-s + 0.0674·45-s − 0.0584·47-s + 1.79·49-s − 0.0319·51-s − 1.47·53-s − 0.297·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.06535491919\)
\(L(\frac12)\) \(\approx\) \(0.06535491919\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 - 0.452T + 5T^{2} \)
7 \( 1 + 4.42T + 7T^{2} \)
11 \( 1 + 4.87T + 11T^{2} \)
17 \( 1 - 0.228T + 17T^{2} \)
19 \( 1 + 3.65T + 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
29 \( 1 - 4.76T + 29T^{2} \)
31 \( 1 + 4.42T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 + 5.23T + 41T^{2} \)
43 \( 1 - 4.22T + 43T^{2} \)
47 \( 1 + 0.400T + 47T^{2} \)
53 \( 1 + 10.7T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 - 2.95T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 + 6.42T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 + 5.48T + 79T^{2} \)
83 \( 1 + 4.87T + 83T^{2} \)
89 \( 1 + 16.5T + 89T^{2} \)
97 \( 1 + 12.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50997016220593637501253555255, −6.93539687682800582565415810622, −6.00999800038083011515510249225, −5.95700423280786916772551290053, −4.98107239398205027032128918118, −4.22403639973337423689812667718, −3.32207934748551871637100275120, −2.67937894482775351605065216586, −1.76779404319948714945414900790, −0.11635259865177838985405255805, 0.11635259865177838985405255805, 1.76779404319948714945414900790, 2.67937894482775351605065216586, 3.32207934748551871637100275120, 4.22403639973337423689812667718, 4.98107239398205027032128918118, 5.95700423280786916772551290053, 6.00999800038083011515510249225, 6.93539687682800582565415810622, 7.50997016220593637501253555255

Graph of the $Z$-function along the critical line