Properties

Label 2-9984-1.1-c1-0-110
Degree $2$
Conductor $9984$
Sign $1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.29·5-s + 2.97·7-s + 9-s − 4.64·11-s + 13-s + 3.29·15-s + 2.52·17-s − 2.18·19-s + 2.97·21-s + 7.18·23-s + 5.85·25-s + 27-s + 8.39·29-s + 5.60·31-s − 4.64·33-s + 9.81·35-s − 5.55·37-s + 39-s + 7.09·41-s − 6.08·43-s + 3.29·45-s + 4.27·47-s + 1.86·49-s + 2.52·51-s − 2.30·53-s − 15.2·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.47·5-s + 1.12·7-s + 0.333·9-s − 1.39·11-s + 0.277·13-s + 0.850·15-s + 0.612·17-s − 0.501·19-s + 0.649·21-s + 1.49·23-s + 1.17·25-s + 0.192·27-s + 1.55·29-s + 1.00·31-s − 0.808·33-s + 1.65·35-s − 0.913·37-s + 0.160·39-s + 1.10·41-s − 0.927·43-s + 0.491·45-s + 0.623·47-s + 0.266·49-s + 0.353·51-s − 0.316·53-s − 2.06·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.408493758\)
\(L(\frac12)\) \(\approx\) \(4.408493758\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 3.29T + 5T^{2} \)
7 \( 1 - 2.97T + 7T^{2} \)
11 \( 1 + 4.64T + 11T^{2} \)
17 \( 1 - 2.52T + 17T^{2} \)
19 \( 1 + 2.18T + 19T^{2} \)
23 \( 1 - 7.18T + 23T^{2} \)
29 \( 1 - 8.39T + 29T^{2} \)
31 \( 1 - 5.60T + 31T^{2} \)
37 \( 1 + 5.55T + 37T^{2} \)
41 \( 1 - 7.09T + 41T^{2} \)
43 \( 1 + 6.08T + 43T^{2} \)
47 \( 1 - 4.27T + 47T^{2} \)
53 \( 1 + 2.30T + 53T^{2} \)
59 \( 1 + 13.8T + 59T^{2} \)
61 \( 1 - 13.0T + 61T^{2} \)
67 \( 1 + 2.39T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 + 7.23T + 73T^{2} \)
79 \( 1 + 10.1T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 7.07T + 89T^{2} \)
97 \( 1 - 3.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80359734752269335532063286345, −6.99255954838807803595935798749, −6.28064447916536121935468353747, −5.44948168461746890821917104696, −5.02789317303616230236565702805, −4.38643547281137677303637297111, −3.03207844459610508290275392287, −2.62128288195557941032907584465, −1.77546907312426880405839137051, −1.03914288624208137908835713955, 1.03914288624208137908835713955, 1.77546907312426880405839137051, 2.62128288195557941032907584465, 3.03207844459610508290275392287, 4.38643547281137677303637297111, 5.02789317303616230236565702805, 5.44948168461746890821917104696, 6.28064447916536121935468353747, 6.99255954838807803595935798749, 7.80359734752269335532063286345

Graph of the $Z$-function along the critical line