Properties

Label 2-9984-1.1-c1-0-113
Degree $2$
Conductor $9984$
Sign $-1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2.87·5-s + 4.47·7-s + 9-s − 4.99·11-s − 13-s + 2.87·15-s − 1.39·17-s + 5.86·19-s − 4.47·21-s + 1.15·23-s + 3.24·25-s − 27-s + 2.24·29-s − 1.27·31-s + 4.99·33-s − 12.8·35-s − 11.1·37-s + 39-s − 0.327·41-s + 5.63·43-s − 2.87·45-s − 3.59·47-s + 12.9·49-s + 1.39·51-s + 9.63·53-s + 14.3·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.28·5-s + 1.68·7-s + 0.333·9-s − 1.50·11-s − 0.277·13-s + 0.741·15-s − 0.337·17-s + 1.34·19-s − 0.975·21-s + 0.239·23-s + 0.648·25-s − 0.192·27-s + 0.416·29-s − 0.228·31-s + 0.869·33-s − 2.16·35-s − 1.83·37-s + 0.160·39-s − 0.0511·41-s + 0.859·43-s − 0.427·45-s − 0.525·47-s + 1.85·49-s + 0.195·51-s + 1.32·53-s + 1.93·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 2.87T + 5T^{2} \)
7 \( 1 - 4.47T + 7T^{2} \)
11 \( 1 + 4.99T + 11T^{2} \)
17 \( 1 + 1.39T + 17T^{2} \)
19 \( 1 - 5.86T + 19T^{2} \)
23 \( 1 - 1.15T + 23T^{2} \)
29 \( 1 - 2.24T + 29T^{2} \)
31 \( 1 + 1.27T + 31T^{2} \)
37 \( 1 + 11.1T + 37T^{2} \)
41 \( 1 + 0.327T + 41T^{2} \)
43 \( 1 - 5.63T + 43T^{2} \)
47 \( 1 + 3.59T + 47T^{2} \)
53 \( 1 - 9.63T + 53T^{2} \)
59 \( 1 + 0.749T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 9.30T + 67T^{2} \)
71 \( 1 - 11.4T + 71T^{2} \)
73 \( 1 + 15.1T + 73T^{2} \)
79 \( 1 + 7.19T + 79T^{2} \)
83 \( 1 + 8.74T + 83T^{2} \)
89 \( 1 - 5.02T + 89T^{2} \)
97 \( 1 - 17.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41728155665073313001538417796, −6.95356353517030342028985993527, −5.61950336141195256925003406599, −5.18604843595957692193912463804, −4.70637192382584517306512418245, −3.97760010748736495650339995909, −3.05800207637193644802155843169, −2.09869349127938317062484562532, −1.05356038914520338707285940144, 0, 1.05356038914520338707285940144, 2.09869349127938317062484562532, 3.05800207637193644802155843169, 3.97760010748736495650339995909, 4.70637192382584517306512418245, 5.18604843595957692193912463804, 5.61950336141195256925003406599, 6.95356353517030342028985993527, 7.41728155665073313001538417796

Graph of the $Z$-function along the critical line