Properties

Label 2-9984-1.1-c1-0-120
Degree $2$
Conductor $9984$
Sign $1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.93·5-s + 2.32·7-s + 9-s − 1.68·11-s − 13-s + 3.93·15-s + 4.13·17-s − 0.414·19-s + 2.32·21-s + 3.75·23-s + 10.5·25-s + 27-s − 8.12·29-s + 10.7·31-s − 1.68·33-s + 9.17·35-s + 3.43·37-s − 39-s + 4.95·41-s + 7.15·43-s + 3.93·45-s − 3.53·47-s − 1.58·49-s + 4.13·51-s − 9.70·53-s − 6.62·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.76·5-s + 0.879·7-s + 0.333·9-s − 0.506·11-s − 0.277·13-s + 1.01·15-s + 1.00·17-s − 0.0951·19-s + 0.508·21-s + 0.783·23-s + 2.10·25-s + 0.192·27-s − 1.50·29-s + 1.92·31-s − 0.292·33-s + 1.55·35-s + 0.564·37-s − 0.160·39-s + 0.773·41-s + 1.09·43-s + 0.587·45-s − 0.515·47-s − 0.225·49-s + 0.579·51-s − 1.33·53-s − 0.892·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.689073747\)
\(L(\frac12)\) \(\approx\) \(4.689073747\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 3.93T + 5T^{2} \)
7 \( 1 - 2.32T + 7T^{2} \)
11 \( 1 + 1.68T + 11T^{2} \)
17 \( 1 - 4.13T + 17T^{2} \)
19 \( 1 + 0.414T + 19T^{2} \)
23 \( 1 - 3.75T + 23T^{2} \)
29 \( 1 + 8.12T + 29T^{2} \)
31 \( 1 - 10.7T + 31T^{2} \)
37 \( 1 - 3.43T + 37T^{2} \)
41 \( 1 - 4.95T + 41T^{2} \)
43 \( 1 - 7.15T + 43T^{2} \)
47 \( 1 + 3.53T + 47T^{2} \)
53 \( 1 + 9.70T + 53T^{2} \)
59 \( 1 + 3.77T + 59T^{2} \)
61 \( 1 + 10.4T + 61T^{2} \)
67 \( 1 - 16.0T + 67T^{2} \)
71 \( 1 - 9.70T + 71T^{2} \)
73 \( 1 + 8.63T + 73T^{2} \)
79 \( 1 + 6.85T + 79T^{2} \)
83 \( 1 + 11.4T + 83T^{2} \)
89 \( 1 - 3.77T + 89T^{2} \)
97 \( 1 + 9.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82463848810598282572776007018, −6.99473052211994094074823814877, −6.19277163553944696834040463518, −5.58764710775397396078316356937, −5.00783619086664837333170397858, −4.33896561779675189408537296754, −3.08731569466443526702432627811, −2.55916954347899054549495616320, −1.76278304248348247021936533770, −1.08955433031255600799000882242, 1.08955433031255600799000882242, 1.76278304248348247021936533770, 2.55916954347899054549495616320, 3.08731569466443526702432627811, 4.33896561779675189408537296754, 5.00783619086664837333170397858, 5.58764710775397396078316356937, 6.19277163553944696834040463518, 6.99473052211994094074823814877, 7.82463848810598282572776007018

Graph of the $Z$-function along the critical line