Properties

Label 2-9984-1.1-c1-0-126
Degree $2$
Conductor $9984$
Sign $-1$
Analytic cond. $79.7226$
Root an. cond. $8.92875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 0.978·5-s − 4.58·7-s + 9-s − 0.922·11-s − 13-s − 0.978·15-s + 1.38·17-s + 5.16·19-s − 4.58·21-s + 1.65·23-s − 4.04·25-s + 27-s − 0.432·29-s + 3.41·31-s − 0.922·33-s + 4.48·35-s − 0.217·37-s − 39-s + 10.4·41-s − 2.25·43-s − 0.978·45-s + 2.75·47-s + 14.0·49-s + 1.38·51-s − 2.95·53-s + 0.901·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.437·5-s − 1.73·7-s + 0.333·9-s − 0.277·11-s − 0.277·13-s − 0.252·15-s + 0.335·17-s + 1.18·19-s − 1.00·21-s + 0.346·23-s − 0.808·25-s + 0.192·27-s − 0.0802·29-s + 0.613·31-s − 0.160·33-s + 0.758·35-s − 0.0357·37-s − 0.160·39-s + 1.62·41-s − 0.343·43-s − 0.145·45-s + 0.401·47-s + 2.00·49-s + 0.193·51-s − 0.405·53-s + 0.121·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9984\)    =    \(2^{8} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(79.7226\)
Root analytic conductor: \(8.92875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9984,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + 0.978T + 5T^{2} \)
7 \( 1 + 4.58T + 7T^{2} \)
11 \( 1 + 0.922T + 11T^{2} \)
17 \( 1 - 1.38T + 17T^{2} \)
19 \( 1 - 5.16T + 19T^{2} \)
23 \( 1 - 1.65T + 23T^{2} \)
29 \( 1 + 0.432T + 29T^{2} \)
31 \( 1 - 3.41T + 31T^{2} \)
37 \( 1 + 0.217T + 37T^{2} \)
41 \( 1 - 10.4T + 41T^{2} \)
43 \( 1 + 2.25T + 43T^{2} \)
47 \( 1 - 2.75T + 47T^{2} \)
53 \( 1 + 2.95T + 53T^{2} \)
59 \( 1 + 2.65T + 59T^{2} \)
61 \( 1 - 5.93T + 61T^{2} \)
67 \( 1 - 7.75T + 67T^{2} \)
71 \( 1 + 9.34T + 71T^{2} \)
73 \( 1 - 2.39T + 73T^{2} \)
79 \( 1 + 7.31T + 79T^{2} \)
83 \( 1 + 13.2T + 83T^{2} \)
89 \( 1 + 1.45T + 89T^{2} \)
97 \( 1 - 5.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35341365039842918342801003930, −6.77787307595261720791432376249, −5.98494267963417872457645960410, −5.37247739946338232731378748985, −4.31598630451899511153697682244, −3.66875536029132475565321879420, −3.01231612372289675360041194326, −2.50291726180055559421691932405, −1.10901356625750322198916765275, 0, 1.10901356625750322198916765275, 2.50291726180055559421691932405, 3.01231612372289675360041194326, 3.66875536029132475565321879420, 4.31598630451899511153697682244, 5.37247739946338232731378748985, 5.98494267963417872457645960410, 6.77787307595261720791432376249, 7.35341365039842918342801003930

Graph of the $Z$-function along the critical line