L(s) = 1 | − 4·2-s − 3-s + 2·4-s + 4·5-s + 4·6-s − 4·7-s + 14·8-s + 6·9-s − 16·10-s + 4·11-s − 2·12-s − 8·13-s + 16·14-s − 4·15-s − 27·16-s + 12·17-s − 24·18-s + 19-s + 8·20-s + 4·21-s − 16·22-s + 3·23-s − 14·24-s + 20·25-s + 32·26-s − 8·27-s − 8·28-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 0.577·3-s + 4-s + 1.78·5-s + 1.63·6-s − 1.51·7-s + 4.94·8-s + 2·9-s − 5.05·10-s + 1.20·11-s − 0.577·12-s − 2.21·13-s + 4.27·14-s − 1.03·15-s − 6.75·16-s + 2.91·17-s − 5.65·18-s + 0.229·19-s + 1.78·20-s + 0.872·21-s − 3.41·22-s + 0.625·23-s − 2.85·24-s + 4·25-s + 6.27·26-s − 1.53·27-s − 1.51·28-s + ⋯ |
Λ(s)=(=((320⋅710)s/2ΓC(s)10L(s)Λ(2−s)
Λ(s)=(=((320⋅710)s/2ΓC(s+1/2)10L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.04491725063 |
L(21) |
≈ |
0.04491725063 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T−5T2−pT3+p2T4+p2T5+p3T6−p3T7−5p3T8+p4T9+p5T10 |
| 7 | 1+4T+12T2+47T3+146T4+309T5+146pT6+47p2T7+12p3T8+4p4T9+p5T10 |
good | 2 | (1+pT+5T2+7T3+13T4+15T5+13pT6+7p2T7+5p3T8+p5T9+p5T10)2 |
| 5 | 1−4T−4T2+44T3−41T4−119T5+222T6−456T7+1623T8+2021T9−16541T10+2021pT11+1623p2T12−456p3T13+222p4T14−119p5T15−41p6T16+44p7T17−4p8T18−4p9T19+p10T20 |
| 11 | 1−4T−31T2+134T3+607T4−2492T5−8385T6+27495T7+98940T8−135733T9−1043873T10−135733pT11+98940p2T12+27495p3T13−8385p4T14−2492p5T15+607p6T16+134p7T17−31p8T18−4p9T19+p10T20 |
| 13 | 1+8T−14T2−14pT3+686T4+4429T5−12871T6−3323pT7+305249T8+358672T9−3841969T10+358672pT11+305249p2T12−3323p4T13−12871p4T14+4429p5T15+686p6T16−14p8T17−14p8T18+8p9T19+p10T20 |
| 17 | 1−12T+14T2+192T3+1185T4−11847T5−6180T6+65736T7+1002861T8−2436261T9−7749777T10−2436261pT11+1002861p2T12+65736p3T13−6180p4T14−11847p5T15+1185p6T16+192p7T17+14p8T18−12p9T19+p10T20 |
| 19 | 1−T−53T2+10pT3+1262T4−7007T5−13111T6+116110T7+67964T8−721616T9−440023T10−721616pT11+67964p2T12+116110p3T13−13111p4T14−7007p5T15+1262p6T16+10p8T17−53p8T18−p9T19+p10T20 |
| 23 | 1−3T−43T2+294T3+6T4−5127T5+21792T6−135027T7+502362T8+3271749T9−33095343T10+3271749pT11+502362p2T12−135027p3T13+21792p4T14−5127p5T15+6p6T16+294p7T17−43p8T18−3p9T19+p10T20 |
| 29 | 1−7T−76T2+419T3+4561T4−15146T5−199563T6+341373T7+6918636T8−2570041T9−219913241T10−2570041pT11+6918636p2T12+341373p3T13−199563p4T14−15146p5T15+4561p6T16+419p7T17−76p8T18−7p9T19+p10T20 |
| 31 | (1−3T+134T2−308T3+250pT4−13615T5+250p2T6−308p2T7+134p3T8−3p4T9+p5T10)2 |
| 37 | 1−89T2+560T3+4503T4−45352T5+27130T6+2296536T7−9801827T8−33131096T9+610977105T10−33131096pT11−9801827p2T12+2296536p3T13+27130p4T14−45352p5T15+4503p6T16+560p7T17−89p8T18+p10T20 |
| 41 | 1−5T−136T2+733T3+10507T4−54412T5−554055T6+2345451T7+23706084T8−41392439T9−952045937T10−41392439pT11+23706084p2T12+2345451p3T13−554055p4T14−54412p5T15+10507p6T16+733p7T17−136p8T18−5p9T19+p10T20 |
| 43 | 1+7T−77T2−66T3+7014T4−3843T5−95427T6+1632678T7−3708600T8−15416324T9+670279801T10−15416324pT11−3708600p2T12+1632678p3T13−95427p4T14−3843p5T15+7014p6T16−66p7T17−77p8T18+7p9T19+p10T20 |
| 47 | (1+27T+448T2+5169T3+48091T4+359985T5+48091pT6+5169p2T7+448p3T8+27p4T9+p5T10)2 |
| 53 | 1+21T+41T2−924T3+12966T4+177027T5−601755T6−3783942T7+110973258T8+340111866T9−4044436041T10+340111866pT11+110973258p2T12−3783942p3T13−601755p4T14+177027p5T15+12966p6T16−924p7T17+41p8T18+21p9T19+p10T20 |
| 59 | (1+30T+601T2+8193T3+88864T4+752289T5+88864pT6+8193p2T7+601p3T8+30p4T9+p5T10)2 |
| 61 | (1−14T+339T2−3409T3+43418T4−311709T5+43418pT6−3409p2T7+339p3T8−14p4T9+p5T10)2 |
| 67 | (1−2T+132T2−196T3+10871T4−15429T5+10871pT6−196p2T7+132p3T8−2p4T9+p5T10)2 |
| 71 | (1+3T+187T2+285T3+15679T4+10143T5+15679pT6+285p2T7+187p3T8+3p4T9+p5T10)2 |
| 73 | 1−15T−134T2+2501T3+16563T4−235276T5−2002535T6+9021201T7+288508378T8−238799411T9−25271949561T10−238799411pT11+288508378p2T12+9021201p3T13−2002535p4T14−235276p5T15+16563p6T16+2501p7T17−134p8T18−15p9T19+p10T20 |
| 79 | (1−4T+300T2−1488T3+39873T4−184983T5+39873pT6−1488p2T7+300p3T8−4p4T9+p5T10)2 |
| 83 | 1−9T−148T2−297T3+24654T4+118125T5−807174T6−21382137T7−37648479T8+452536146T9+15509586612T10+452536146pT11−37648479p2T12−21382137p3T13−807174p4T14+118125p5T15+24654p6T16−297p7T17−148p8T18−9p9T19+p10T20 |
| 89 | 1−28T+104T2+1736T3+31273T4−611939T5−1780638T6+18973932T7+740914101T8−3271180573T9−40614588329T10−3271180573pT11+740914101p2T12+18973932p3T13−1780638p4T14−611939p5T15+31273p6T16+1736p7T17+104p8T18−28p9T19+p10T20 |
| 97 | 1+12T−197T2−1534T3+27813T4+14090T5−4545035T6−6881349T7+472663750T8+908843245T9−38512186359T10+908843245pT11+472663750p2T12−6881349p3T13−4545035p4T14+14090p5T15+27813p6T16−1534p7T17−197p8T18+12p9T19+p10T20 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.53207955415737755395834729244, −6.25303642141925168021465339098, −6.07013110388134911569095207318, −5.95279916044332521466658862994, −5.94026064560954979798465437727, −5.91132333595949228298131116926, −5.10695350308937058297288025336, −5.02725687679474812737482165602, −4.95428750136026086516854026604, −4.91231592321559048897814000150, −4.89905415517488434285814136983, −4.82158448379452796949920558183, −4.49149929585291352046660725836, −4.38903082395480488332444143863, −4.38322358029979438503815601339, −3.51326071174946722430497290653, −3.43742014098811917873730442880, −3.31792143020839315790164686836, −3.29039209831810741951829606088, −3.13888849535205387440684217146, −2.71428091851818167901520909891, −2.15573284589757776053100995816, −1.63497820121561289417728828021, −1.58907409519659394128148289584, −1.04350541068247671363544768239,
1.04350541068247671363544768239, 1.58907409519659394128148289584, 1.63497820121561289417728828021, 2.15573284589757776053100995816, 2.71428091851818167901520909891, 3.13888849535205387440684217146, 3.29039209831810741951829606088, 3.31792143020839315790164686836, 3.43742014098811917873730442880, 3.51326071174946722430497290653, 4.38322358029979438503815601339, 4.38903082395480488332444143863, 4.49149929585291352046660725836, 4.82158448379452796949920558183, 4.89905415517488434285814136983, 4.91231592321559048897814000150, 4.95428750136026086516854026604, 5.02725687679474812737482165602, 5.10695350308937058297288025336, 5.91132333595949228298131116926, 5.94026064560954979798465437727, 5.95279916044332521466658862994, 6.07013110388134911569095207318, 6.25303642141925168021465339098, 6.53207955415737755395834729244
Plot not available for L-functions of degree greater than 10.