Properties

Label 20-63e10-1.1-c1e10-0-0
Degree $20$
Conductor $9.849\times 10^{17}$
Sign $1$
Analytic cond. $0.00103795$
Root an. cond. $0.709265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 3-s + 2·4-s + 4·5-s + 4·6-s − 4·7-s + 14·8-s + 6·9-s − 16·10-s + 4·11-s − 2·12-s − 8·13-s + 16·14-s − 4·15-s − 27·16-s + 12·17-s − 24·18-s + 19-s + 8·20-s + 4·21-s − 16·22-s + 3·23-s − 14·24-s + 20·25-s + 32·26-s − 8·27-s − 8·28-s + ⋯
L(s)  = 1  − 2.82·2-s − 0.577·3-s + 4-s + 1.78·5-s + 1.63·6-s − 1.51·7-s + 4.94·8-s + 2·9-s − 5.05·10-s + 1.20·11-s − 0.577·12-s − 2.21·13-s + 4.27·14-s − 1.03·15-s − 6.75·16-s + 2.91·17-s − 5.65·18-s + 0.229·19-s + 1.78·20-s + 0.872·21-s − 3.41·22-s + 0.625·23-s − 2.85·24-s + 4·25-s + 6.27·26-s − 1.53·27-s − 1.51·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(3^{20} \cdot 7^{10}\)
Sign: $1$
Analytic conductor: \(0.00103795\)
Root analytic conductor: \(0.709265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 3^{20} \cdot 7^{10} ,\ ( \ : [1/2]^{10} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.04491725063\)
\(L(\frac12)\) \(\approx\) \(0.04491725063\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T - 5 T^{2} - p T^{3} + p^{2} T^{4} + p^{2} T^{5} + p^{3} T^{6} - p^{3} T^{7} - 5 p^{3} T^{8} + p^{4} T^{9} + p^{5} T^{10} \)
7 \( 1 + 4 T + 12 T^{2} + 47 T^{3} + 146 T^{4} + 309 T^{5} + 146 p T^{6} + 47 p^{2} T^{7} + 12 p^{3} T^{8} + 4 p^{4} T^{9} + p^{5} T^{10} \)
good2 \( ( 1 + p T + 5 T^{2} + 7 T^{3} + 13 T^{4} + 15 T^{5} + 13 p T^{6} + 7 p^{2} T^{7} + 5 p^{3} T^{8} + p^{5} T^{9} + p^{5} T^{10} )^{2} \)
5 \( 1 - 4 T - 4 T^{2} + 44 T^{3} - 41 T^{4} - 119 T^{5} + 222 T^{6} - 456 T^{7} + 1623 T^{8} + 2021 T^{9} - 16541 T^{10} + 2021 p T^{11} + 1623 p^{2} T^{12} - 456 p^{3} T^{13} + 222 p^{4} T^{14} - 119 p^{5} T^{15} - 41 p^{6} T^{16} + 44 p^{7} T^{17} - 4 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
11 \( 1 - 4 T - 31 T^{2} + 134 T^{3} + 607 T^{4} - 2492 T^{5} - 8385 T^{6} + 27495 T^{7} + 98940 T^{8} - 135733 T^{9} - 1043873 T^{10} - 135733 p T^{11} + 98940 p^{2} T^{12} + 27495 p^{3} T^{13} - 8385 p^{4} T^{14} - 2492 p^{5} T^{15} + 607 p^{6} T^{16} + 134 p^{7} T^{17} - 31 p^{8} T^{18} - 4 p^{9} T^{19} + p^{10} T^{20} \)
13 \( 1 + 8 T - 14 T^{2} - 14 p T^{3} + 686 T^{4} + 4429 T^{5} - 12871 T^{6} - 3323 p T^{7} + 305249 T^{8} + 358672 T^{9} - 3841969 T^{10} + 358672 p T^{11} + 305249 p^{2} T^{12} - 3323 p^{4} T^{13} - 12871 p^{4} T^{14} + 4429 p^{5} T^{15} + 686 p^{6} T^{16} - 14 p^{8} T^{17} - 14 p^{8} T^{18} + 8 p^{9} T^{19} + p^{10} T^{20} \)
17 \( 1 - 12 T + 14 T^{2} + 192 T^{3} + 1185 T^{4} - 11847 T^{5} - 6180 T^{6} + 65736 T^{7} + 1002861 T^{8} - 2436261 T^{9} - 7749777 T^{10} - 2436261 p T^{11} + 1002861 p^{2} T^{12} + 65736 p^{3} T^{13} - 6180 p^{4} T^{14} - 11847 p^{5} T^{15} + 1185 p^{6} T^{16} + 192 p^{7} T^{17} + 14 p^{8} T^{18} - 12 p^{9} T^{19} + p^{10} T^{20} \)
19 \( 1 - T - 53 T^{2} + 10 p T^{3} + 1262 T^{4} - 7007 T^{5} - 13111 T^{6} + 116110 T^{7} + 67964 T^{8} - 721616 T^{9} - 440023 T^{10} - 721616 p T^{11} + 67964 p^{2} T^{12} + 116110 p^{3} T^{13} - 13111 p^{4} T^{14} - 7007 p^{5} T^{15} + 1262 p^{6} T^{16} + 10 p^{8} T^{17} - 53 p^{8} T^{18} - p^{9} T^{19} + p^{10} T^{20} \)
23 \( 1 - 3 T - 43 T^{2} + 294 T^{3} + 6 T^{4} - 5127 T^{5} + 21792 T^{6} - 135027 T^{7} + 502362 T^{8} + 3271749 T^{9} - 33095343 T^{10} + 3271749 p T^{11} + 502362 p^{2} T^{12} - 135027 p^{3} T^{13} + 21792 p^{4} T^{14} - 5127 p^{5} T^{15} + 6 p^{6} T^{16} + 294 p^{7} T^{17} - 43 p^{8} T^{18} - 3 p^{9} T^{19} + p^{10} T^{20} \)
29 \( 1 - 7 T - 76 T^{2} + 419 T^{3} + 4561 T^{4} - 15146 T^{5} - 199563 T^{6} + 341373 T^{7} + 6918636 T^{8} - 2570041 T^{9} - 219913241 T^{10} - 2570041 p T^{11} + 6918636 p^{2} T^{12} + 341373 p^{3} T^{13} - 199563 p^{4} T^{14} - 15146 p^{5} T^{15} + 4561 p^{6} T^{16} + 419 p^{7} T^{17} - 76 p^{8} T^{18} - 7 p^{9} T^{19} + p^{10} T^{20} \)
31 \( ( 1 - 3 T + 134 T^{2} - 308 T^{3} + 250 p T^{4} - 13615 T^{5} + 250 p^{2} T^{6} - 308 p^{2} T^{7} + 134 p^{3} T^{8} - 3 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
37 \( 1 - 89 T^{2} + 560 T^{3} + 4503 T^{4} - 45352 T^{5} + 27130 T^{6} + 2296536 T^{7} - 9801827 T^{8} - 33131096 T^{9} + 610977105 T^{10} - 33131096 p T^{11} - 9801827 p^{2} T^{12} + 2296536 p^{3} T^{13} + 27130 p^{4} T^{14} - 45352 p^{5} T^{15} + 4503 p^{6} T^{16} + 560 p^{7} T^{17} - 89 p^{8} T^{18} + p^{10} T^{20} \)
41 \( 1 - 5 T - 136 T^{2} + 733 T^{3} + 10507 T^{4} - 54412 T^{5} - 554055 T^{6} + 2345451 T^{7} + 23706084 T^{8} - 41392439 T^{9} - 952045937 T^{10} - 41392439 p T^{11} + 23706084 p^{2} T^{12} + 2345451 p^{3} T^{13} - 554055 p^{4} T^{14} - 54412 p^{5} T^{15} + 10507 p^{6} T^{16} + 733 p^{7} T^{17} - 136 p^{8} T^{18} - 5 p^{9} T^{19} + p^{10} T^{20} \)
43 \( 1 + 7 T - 77 T^{2} - 66 T^{3} + 7014 T^{4} - 3843 T^{5} - 95427 T^{6} + 1632678 T^{7} - 3708600 T^{8} - 15416324 T^{9} + 670279801 T^{10} - 15416324 p T^{11} - 3708600 p^{2} T^{12} + 1632678 p^{3} T^{13} - 95427 p^{4} T^{14} - 3843 p^{5} T^{15} + 7014 p^{6} T^{16} - 66 p^{7} T^{17} - 77 p^{8} T^{18} + 7 p^{9} T^{19} + p^{10} T^{20} \)
47 \( ( 1 + 27 T + 448 T^{2} + 5169 T^{3} + 48091 T^{4} + 359985 T^{5} + 48091 p T^{6} + 5169 p^{2} T^{7} + 448 p^{3} T^{8} + 27 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
53 \( 1 + 21 T + 41 T^{2} - 924 T^{3} + 12966 T^{4} + 177027 T^{5} - 601755 T^{6} - 3783942 T^{7} + 110973258 T^{8} + 340111866 T^{9} - 4044436041 T^{10} + 340111866 p T^{11} + 110973258 p^{2} T^{12} - 3783942 p^{3} T^{13} - 601755 p^{4} T^{14} + 177027 p^{5} T^{15} + 12966 p^{6} T^{16} - 924 p^{7} T^{17} + 41 p^{8} T^{18} + 21 p^{9} T^{19} + p^{10} T^{20} \)
59 \( ( 1 + 30 T + 601 T^{2} + 8193 T^{3} + 88864 T^{4} + 752289 T^{5} + 88864 p T^{6} + 8193 p^{2} T^{7} + 601 p^{3} T^{8} + 30 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
61 \( ( 1 - 14 T + 339 T^{2} - 3409 T^{3} + 43418 T^{4} - 311709 T^{5} + 43418 p T^{6} - 3409 p^{2} T^{7} + 339 p^{3} T^{8} - 14 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
67 \( ( 1 - 2 T + 132 T^{2} - 196 T^{3} + 10871 T^{4} - 15429 T^{5} + 10871 p T^{6} - 196 p^{2} T^{7} + 132 p^{3} T^{8} - 2 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
71 \( ( 1 + 3 T + 187 T^{2} + 285 T^{3} + 15679 T^{4} + 10143 T^{5} + 15679 p T^{6} + 285 p^{2} T^{7} + 187 p^{3} T^{8} + 3 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
73 \( 1 - 15 T - 134 T^{2} + 2501 T^{3} + 16563 T^{4} - 235276 T^{5} - 2002535 T^{6} + 9021201 T^{7} + 288508378 T^{8} - 238799411 T^{9} - 25271949561 T^{10} - 238799411 p T^{11} + 288508378 p^{2} T^{12} + 9021201 p^{3} T^{13} - 2002535 p^{4} T^{14} - 235276 p^{5} T^{15} + 16563 p^{6} T^{16} + 2501 p^{7} T^{17} - 134 p^{8} T^{18} - 15 p^{9} T^{19} + p^{10} T^{20} \)
79 \( ( 1 - 4 T + 300 T^{2} - 1488 T^{3} + 39873 T^{4} - 184983 T^{5} + 39873 p T^{6} - 1488 p^{2} T^{7} + 300 p^{3} T^{8} - 4 p^{4} T^{9} + p^{5} T^{10} )^{2} \)
83 \( 1 - 9 T - 148 T^{2} - 297 T^{3} + 24654 T^{4} + 118125 T^{5} - 807174 T^{6} - 21382137 T^{7} - 37648479 T^{8} + 452536146 T^{9} + 15509586612 T^{10} + 452536146 p T^{11} - 37648479 p^{2} T^{12} - 21382137 p^{3} T^{13} - 807174 p^{4} T^{14} + 118125 p^{5} T^{15} + 24654 p^{6} T^{16} - 297 p^{7} T^{17} - 148 p^{8} T^{18} - 9 p^{9} T^{19} + p^{10} T^{20} \)
89 \( 1 - 28 T + 104 T^{2} + 1736 T^{3} + 31273 T^{4} - 611939 T^{5} - 1780638 T^{6} + 18973932 T^{7} + 740914101 T^{8} - 3271180573 T^{9} - 40614588329 T^{10} - 3271180573 p T^{11} + 740914101 p^{2} T^{12} + 18973932 p^{3} T^{13} - 1780638 p^{4} T^{14} - 611939 p^{5} T^{15} + 31273 p^{6} T^{16} + 1736 p^{7} T^{17} + 104 p^{8} T^{18} - 28 p^{9} T^{19} + p^{10} T^{20} \)
97 \( 1 + 12 T - 197 T^{2} - 1534 T^{3} + 27813 T^{4} + 14090 T^{5} - 4545035 T^{6} - 6881349 T^{7} + 472663750 T^{8} + 908843245 T^{9} - 38512186359 T^{10} + 908843245 p T^{11} + 472663750 p^{2} T^{12} - 6881349 p^{3} T^{13} - 4545035 p^{4} T^{14} + 14090 p^{5} T^{15} + 27813 p^{6} T^{16} - 1534 p^{7} T^{17} - 197 p^{8} T^{18} + 12 p^{9} T^{19} + p^{10} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.53207955415737755395834729244, −6.25303642141925168021465339098, −6.07013110388134911569095207318, −5.95279916044332521466658862994, −5.94026064560954979798465437727, −5.91132333595949228298131116926, −5.10695350308937058297288025336, −5.02725687679474812737482165602, −4.95428750136026086516854026604, −4.91231592321559048897814000150, −4.89905415517488434285814136983, −4.82158448379452796949920558183, −4.49149929585291352046660725836, −4.38903082395480488332444143863, −4.38322358029979438503815601339, −3.51326071174946722430497290653, −3.43742014098811917873730442880, −3.31792143020839315790164686836, −3.29039209831810741951829606088, −3.13888849535205387440684217146, −2.71428091851818167901520909891, −2.15573284589757776053100995816, −1.63497820121561289417728828021, −1.58907409519659394128148289584, −1.04350541068247671363544768239, 1.04350541068247671363544768239, 1.58907409519659394128148289584, 1.63497820121561289417728828021, 2.15573284589757776053100995816, 2.71428091851818167901520909891, 3.13888849535205387440684217146, 3.29039209831810741951829606088, 3.31792143020839315790164686836, 3.43742014098811917873730442880, 3.51326071174946722430497290653, 4.38322358029979438503815601339, 4.38903082395480488332444143863, 4.49149929585291352046660725836, 4.82158448379452796949920558183, 4.89905415517488434285814136983, 4.91231592321559048897814000150, 4.95428750136026086516854026604, 5.02725687679474812737482165602, 5.10695350308937058297288025336, 5.91132333595949228298131116926, 5.94026064560954979798465437727, 5.95279916044332521466658862994, 6.07013110388134911569095207318, 6.25303642141925168021465339098, 6.53207955415737755395834729244

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.