L(s) = 1 | − 6·2-s − 2·3-s + 24·4-s + 3·5-s + 12·6-s − 66·8-s + 3·9-s − 18·10-s + 15·11-s − 48·12-s − 18·13-s − 6·15-s + 143·16-s − 26·17-s − 18·18-s − 19-s + 72·20-s − 90·22-s − 6·23-s + 132·24-s + 5·25-s + 108·26-s − 22·27-s + 28·29-s + 36·30-s − 10·31-s − 242·32-s + ⋯ |
L(s) = 1 | − 4.24·2-s − 1.15·3-s + 12·4-s + 1.34·5-s + 4.89·6-s − 23.3·8-s + 9-s − 5.69·10-s + 4.52·11-s − 13.8·12-s − 4.99·13-s − 1.54·15-s + 35.7·16-s − 6.30·17-s − 4.24·18-s − 0.229·19-s + 16.0·20-s − 19.1·22-s − 1.25·23-s + 26.9·24-s + 25-s + 21.1·26-s − 4.23·27-s + 5.19·29-s + 6.57·30-s − 1.79·31-s − 42.7·32-s + ⋯ |
Λ(s)=(=((6710)s/2ΓC(s)10L(s)Λ(2−s)
Λ(s)=(=((6710)s/2ΓC(s+1/2)10L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.07887126118 |
L(21) |
≈ |
0.07887126118 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 67 | 1−23T+111T2+967T3−6379T4−13685T5−6379pT6+967p2T7+111p3T8−23p4T9+p5T10 |
good | 2 | 1+3pT+3p2T2−3pT3−71T4−53pT5+39pT6+115p2T7+459T8−509T9−1673T10−509pT11+459p2T12+115p5T13+39p5T14−53p6T15−71p6T16−3p8T17+3p10T18+3p10T19+p10T20 |
| 3 | 1+2T+T2+2p2T3+11pT4+4pT5+41pT6+232T7+95T8+44p2T9+1189T10+44p3T11+95p2T12+232p3T13+41p5T14+4p6T15+11p7T16+2p9T17+p8T18+2p9T19+p10T20 |
| 5 | 1−3T+4T2−6pT3+14pT4−159T5+644T6−1137T7+3491T8−9023T9+12881T10−9023pT11+3491p2T12−1137p3T13+644p4T14−159p5T15+14p7T16−6p8T17+4p8T18−3p9T19+p10T20 |
| 7 | 1−pT2+55T3+93T4−440T5+1175T6+5577T7−8962T8−1562T9+146939T10−1562pT11−8962p2T12+5577p3T13+1175p4T14−440p5T15+93p6T16+55p7T17−p9T18+p10T20 |
| 11 | 1−15T+126T2−757T3+3479T4−12112T5+27955T6−8431T7−315526T8+1986795T9−7797811T10+1986795pT11−315526p2T12−8431p3T13+27955p4T14−12112p5T15+3479p6T16−757p7T17+126p8T18−15p9T19+p10T20 |
| 13 | 1+18T+146T2+53pT3+2155T4+5402T5+13418T6+33039T7+136842T8+73910pT9+4602685T10+73910p2T11+136842p2T12+33039p3T13+13418p4T14+5402p5T15+2155p6T16+53p8T17+146p8T18+18p9T19+p10T20 |
| 17 | 1+26T+373T2+3888T3+32366T4+226300T5+1375228T6+7447050T7+36667420T8+166910084T9+710331073T10+166910084pT11+36667420p2T12+7447050p3T13+1375228p4T14+226300p5T15+32366p6T16+3888p7T17+373p8T18+26p9T19+p10T20 |
| 19 | 1+T+26T2+216T3+745T4+7223T5+26552T6+180606T7+43618pT8+3043374T9+21110165T10+3043374pT11+43618p3T12+180606p3T13+26552p4T14+7223p5T15+745p6T16+216p7T17+26p8T18+p9T19+p10T20 |
| 23 | 1+6T+2pT2+292T3+2014T4+12892T5+71697T6+391682T7+2068724T8+10751196T9+57015969T10+10751196pT11+2068724p2T12+391682p3T13+71697p4T14+12892p5T15+2014p6T16+292p7T17+2p9T18+6p9T19+p10T20 |
| 29 | (1−14T+186T2−1499T3+11494T4−63593T5+11494pT6−1499p2T7+186p3T8−14p4T9+p5T10)2 |
| 31 | 1+10T+102T2+1249T3+10329T4+81687T5+630673T6+4474506T7+28121671T8+171796966T9+1032212413T10+171796966pT11+28121671p2T12+4474506p3T13+630673p4T14+81687p5T15+10329p6T16+1249p7T17+102p8T18+10p9T19+p10T20 |
| 37 | (1+11T+130T2+1177T3+9389T4+56001T5+9389pT6+1177p2T7+130p3T8+11p4T9+p5T10)2 |
| 41 | 1−9T+40T2+306T3+160T4−11313T5+147826T6+497850T7−658742T8−2759394T9+350382319T10−2759394pT11−658742p2T12+497850p3T13+147826p4T14−11313p5T15+160p6T16+306p7T17+40p8T18−9p9T19+p10T20 |
| 43 | 1−21T+288T2−2769T3+21840T4−140055T5+652423T6−1065890T7−17392825T8+230128679T9−1793081113T10+230128679pT11−17392825p2T12−1065890p3T13+652423p4T14−140055p5T15+21840p6T16−2769p7T17+288p8T18−21p9T19+p10T20 |
| 47 | 1+22T+250T2+1386T3−1982T4−113916T5−1065993T6−4765420T7+5013254T8+268925668T9+2504576689T10+268925668pT11+5013254p2T12−4765420p3T13−1065993p4T14−113916p5T15−1982p6T16+1386p7T17+250p8T18+22p9T19+p10T20 |
| 53 | 1−20T+116T2+489T3−12903T4+90166T5−42792T6−3807843T7+23205826T8−707784T9−545699835T10−707784pT11+23205826p2T12−3807843p3T13−42792p4T14+90166p5T15−12903p6T16+489p7T17+116p8T18−20p9T19+p10T20 |
| 59 | 1+17T+241T2+2599T3+22814T4+177187T5+1323866T6+8330851T7+63828025T8+477832256T9+3640127217T10+477832256pT11+63828025p2T12+8330851p3T13+1323866p4T14+177187p5T15+22814p6T16+2599p7T17+241p8T18+17p9T19+p10T20 |
| 61 | 1−13T+174T2−1337T3+19571T4−174296T5+1981255T6−12996507T7+132793130T8−952257907T9+9819441367T10−952257907pT11+132793130p2T12−12996507p3T13+1981255p4T14−174296p5T15+19571p6T16−1337p7T17+174p8T18−13p9T19+p10T20 |
| 71 | 1−T−81T2+603T3−9581T4−22881T5+1272030T6−6773213T7+338422pT8+397226390T9−8711303457T10+397226390pT11+338422p3T12−6773213p3T13+1272030p4T14−22881p5T15−9581p6T16+603p7T17−81p8T18−p9T19+p10T20 |
| 73 | 1+18T+207T2+1796T3+19065T4+229904T5+2431707T6+18414708T7+149245213T8+1425344942T9+13293131103T10+1425344942pT11+149245213p2T12+18414708p3T13+2431707p4T14+229904p5T15+19065p6T16+1796p7T17+207p8T18+18p9T19+p10T20 |
| 79 | 1−5T−76T2+2590T3−1270T4−218797T5+2276594T6+15204858T7−184964002T8+26446076T9+19410983107T10+26446076pT11−184964002p2T12+15204858p3T13+2276594p4T14−218797p5T15−1270p6T16+2590p7T17−76p8T18−5p9T19+p10T20 |
| 83 | 1+12T−115T2−1540T3+6465T4+30181T5−945413T6−42680pT7+7145785T8+397493039T9+7663760257T10+397493039pT11+7145785p2T12−42680p4T13−945413p4T14+30181p5T15+6465p6T16−1540p7T17−115p8T18+12p9T19+p10T20 |
| 89 | 1−51T+1126T2−15003T3+164417T4−1953568T5+22220139T6−202706651T7+1729561976T8−17858590849T9+185096728543T10−17858590849pT11+1729561976p2T12−202706651p3T13+22220139p4T14−1953568p5T15+164417p6T16−15003p7T17+1126p8T18−51p9T19+p10T20 |
| 97 | (1+5T+396T2+1653T3+69681T4+225603T5+69681pT6+1653p2T7+396p3T8+5p4T9+p5T10)2 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.36482481701108108846189516670, −6.34075392809389608307121277984, −6.33339869963557778593805852611, −6.07500849640953219260349586335, −5.96497745018869722875971425292, −5.87441071277092371701818614499, −5.41294864253551256224147896572, −5.03773897762151392801797217235, −4.98974771778447620779401953629, −4.87753131370298889005593320325, −4.80551532546529382123211624942, −4.72610928698281295875661100000, −4.18178578843873943528256330715, −4.04353129471180137993356740970, −4.00649036787726745642882726746, −3.89270894046844294842534682873, −3.71232404412472618660734369885, −2.75257143067634281787472220995, −2.51637970927187035342813907583, −2.48231968057767050624373350024, −2.27074473713084819478402558799, −2.13604216291331806054805858341, −1.81691943013905374783199452849, −1.75870967665180397768350887951, −1.49269717254852779529034636948,
1.49269717254852779529034636948, 1.75870967665180397768350887951, 1.81691943013905374783199452849, 2.13604216291331806054805858341, 2.27074473713084819478402558799, 2.48231968057767050624373350024, 2.51637970927187035342813907583, 2.75257143067634281787472220995, 3.71232404412472618660734369885, 3.89270894046844294842534682873, 4.00649036787726745642882726746, 4.04353129471180137993356740970, 4.18178578843873943528256330715, 4.72610928698281295875661100000, 4.80551532546529382123211624942, 4.87753131370298889005593320325, 4.98974771778447620779401953629, 5.03773897762151392801797217235, 5.41294864253551256224147896572, 5.87441071277092371701818614499, 5.96497745018869722875971425292, 6.07500849640953219260349586335, 6.33339869963557778593805852611, 6.34075392809389608307121277984, 6.36482481701108108846189516670
Plot not available for L-functions of degree greater than 10.