L(s) = 1 | + 3-s + 4-s − 2·5-s + 11-s + 12-s − 2·15-s − 2·20-s − 23-s + 25-s − 2·31-s + 33-s + 44-s + 49-s + 2·53-s − 2·55-s − 2·60-s − 69-s − 11·71-s + 75-s + 2·89-s − 92-s − 2·93-s − 11·97-s + 100-s + 2·113-s + 2·115-s − 2·124-s + ⋯ |
L(s) = 1 | + 3-s + 4-s − 2·5-s + 11-s + 12-s − 2·15-s − 2·20-s − 23-s + 25-s − 2·31-s + 33-s + 44-s + 49-s + 2·53-s − 2·55-s − 2·60-s − 69-s − 11·71-s + 75-s + 2·89-s − 92-s − 2·93-s − 11·97-s + 100-s + 2·113-s + 2·115-s − 2·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 11^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4298626605\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4298626605\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
| 11 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
| 23 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
good | 2 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 5 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 7 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 17 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 19 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 29 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 31 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 41 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 43 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 47 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 53 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 61 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 71 | \( ( 1 + T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 79 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 97 | \( ( 1 + T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.13169368230537108057237909656, −4.04512912232849494973551336004, −3.86755288993258236671664488487, −3.78012310341311797455699975717, −3.67290301885061116941650794845, −3.66244933132070070713906348165, −3.30176179402836884952348962350, −3.10427308500204328268688528516, −3.01682155691003008089464237517, −3.01559389182059657115658802879, −3.01332629440400930167828346057, −2.91570743693391176177554578745, −2.68216118391603710036992846260, −2.66414727933795613182352424142, −2.64245273271469038423740182094, −2.31996272233947653938819050435, −2.05180864387079366975673841630, −1.82068606928102639317806062344, −1.76889651018108094712603290338, −1.68069007868343073209400674611, −1.66851182074270606768332203879, −1.57218751463851208188347919730, −1.34855651537476016162739000380, −0.843907767160929969591719817391, −0.64511802082160709157692683767,
0.64511802082160709157692683767, 0.843907767160929969591719817391, 1.34855651537476016162739000380, 1.57218751463851208188347919730, 1.66851182074270606768332203879, 1.68069007868343073209400674611, 1.76889651018108094712603290338, 1.82068606928102639317806062344, 2.05180864387079366975673841630, 2.31996272233947653938819050435, 2.64245273271469038423740182094, 2.66414727933795613182352424142, 2.68216118391603710036992846260, 2.91570743693391176177554578745, 3.01332629440400930167828346057, 3.01559389182059657115658802879, 3.01682155691003008089464237517, 3.10427308500204328268688528516, 3.30176179402836884952348962350, 3.66244933132070070713906348165, 3.67290301885061116941650794845, 3.78012310341311797455699975717, 3.86755288993258236671664488487, 4.04512912232849494973551336004, 4.13169368230537108057237909656
Plot not available for L-functions of degree greater than 10.