L(s) = 1 | + 4-s + 12·11-s − 2·37-s − 2·43-s + 12·44-s + 49-s − 2·53-s + 2·67-s + 81-s − 2·107-s + 2·109-s + 79·121-s + 127-s + 131-s + 137-s + 139-s − 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·172-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | + 4-s + 12·11-s − 2·37-s − 2·43-s + 12·44-s + 49-s − 2·53-s + 2·67-s + 81-s − 2·107-s + 2·109-s + 79·121-s + 127-s + 131-s + 137-s + 139-s − 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·172-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(17.64443076\) |
\(L(\frac12)\) |
\(\approx\) |
\(17.64443076\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \) |
| 7 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \) |
| 29 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \) |
good | 3 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 5 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 11 | \( ( 1 - T )^{12}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 13 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 17 | \( ( 1 + T^{2} )^{12} \) |
| 19 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 23 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 31 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 41 | \( ( 1 - T )^{12}( 1 + T )^{12} \) |
| 43 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 47 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 59 | \( ( 1 + T^{4} )^{6} \) |
| 61 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 71 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 79 | \( ( 1 + T^{2} )^{6}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 83 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 97 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.95843389134644234697899628847, −2.93608350603408175364746341854, −2.75435547670834336779013510928, −2.54114596115368343624055619277, −2.36256425696156085571577316353, −2.28112793613820297990934497371, −2.15941836979808325829049342630, −2.10059898760082791508195332644, −2.06768912069511677101203908992, −2.00929761403908340850236482377, −1.98365648997287828679144797038, −1.88536069363254025627976705288, −1.78083527298022941358879775552, −1.77540040387310641676966908999, −1.57110004226724267899513218697, −1.40191099098740854169594123910, −1.37632440056115271320471939151, −1.32291368797986801770433195233, −1.14054741556959232903379953450, −1.13134420487580328222448579482, −1.11685776129584361277920743492, −0.951982011975907171926358901236, −0.890824938118078254450879360609, −0.853438179830430710299406696120, −0.47122874041287708120948129739,
0.47122874041287708120948129739, 0.853438179830430710299406696120, 0.890824938118078254450879360609, 0.951982011975907171926358901236, 1.11685776129584361277920743492, 1.13134420487580328222448579482, 1.14054741556959232903379953450, 1.32291368797986801770433195233, 1.37632440056115271320471939151, 1.40191099098740854169594123910, 1.57110004226724267899513218697, 1.77540040387310641676966908999, 1.78083527298022941358879775552, 1.88536069363254025627976705288, 1.98365648997287828679144797038, 2.00929761403908340850236482377, 2.06768912069511677101203908992, 2.10059898760082791508195332644, 2.15941836979808325829049342630, 2.28112793613820297990934497371, 2.36256425696156085571577316353, 2.54114596115368343624055619277, 2.75435547670834336779013510928, 2.93608350603408175364746341854, 2.95843389134644234697899628847
Plot not available for L-functions of degree greater than 10.