L(s) = 1 | + 18·3-s − 24·4-s + 113·9-s − 432·12-s + 336·16-s − 198·17-s − 534·23-s + 382·25-s + 374·27-s − 238·29-s − 2.71e3·36-s − 856·43-s + 6.04e3·48-s + 1.15e3·49-s − 3.56e3·51-s + 178·53-s + 3.40e3·61-s − 3.58e3·64-s + 4.75e3·68-s − 9.61e3·69-s + 6.87e3·75-s − 1.75e3·79-s + 2.89e3·81-s − 4.28e3·87-s + 1.28e4·92-s − 9.16e3·100-s + 5.49e3·101-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 3·4-s + 4.18·9-s − 10.3·12-s + 21/4·16-s − 2.82·17-s − 4.84·23-s + 3.05·25-s + 2.66·27-s − 1.52·29-s − 12.5·36-s − 3.03·43-s + 18.1·48-s + 3.37·49-s − 9.78·51-s + 0.461·53-s + 7.15·61-s − 7·64-s + 8.47·68-s − 16.7·69-s + 10.5·75-s − 2.49·79-s + 3.96·81-s − 5.27·87-s + 14.5·92-s − 9.16·100-s + 5.41·101-s + ⋯ |
Λ(s)=(=((212⋅1324)s/2ΓC(s)12L(s)Λ(4−s)
Λ(s)=(=((212⋅1324)s/2ΓC(s+3/2)12L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.1973098938 |
L(21) |
≈ |
0.1973098938 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+p2T2)6 |
| 13 | 1 |
good | 3 | (1−p2T+65T2−484T3+308p2T4−14446T5+82285T6−14446p3T7+308p8T8−484p9T9+65p12T10−p17T11+p18T12)2 |
| 5 | 1−382T2+93199T4−3539669pT6+2754615289T8−389109534481T10+50512702160206T12−389109534481p6T14+2754615289p12T16−3539669p19T18+93199p24T20−382p30T22+p36T24 |
| 7 | 1−1159T2+813634T4−415626322T6+25311558955pT8−1406264176663p2T10+496947802324576p2T12−1406264176663p8T14+25311558955p13T16−415626322p18T18+813634p24T20−1159p30T22+p36T24 |
| 11 | 1−8117T2+33989553T4−98393356134T6+219078606548874T8−391842639166411830T10+57⋯35T12−391842639166411830p6T14+219078606548874p12T16−98393356134p18T18+33989553p24T20−8117p30T22+p36T24 |
| 17 | (1+99T+15235T2+1418010T3+155831450T4+11553597880T5+895771727153T6+11553597880p3T7+155831450p6T8+1418010p9T9+15235p12T10+99p15T11+p18T12)2 |
| 19 | 1−36013T2+716146137T4−10102929361070T6+111338486468995570T8−10⋯14T10+74⋯39T12−10⋯14p6T14+111338486468995570p12T16−10102929361070p18T18+716146137p24T20−36013p30T22+p36T24 |
| 23 | (1+267T+65293T2+11352002T3+1904634711T4+10605914921pT5+29697637919118T6+10605914921p4T7+1904634711p6T8+11352002p9T9+65293p12T10+267p15T11+p18T12)2 |
| 29 | (1+119T+124344T2+11836678T3+6759160701T4+516098000019T5+7271394875556pT6+516098000019p3T7+6759160701p6T8+11836678p9T9+124344p12T10+119p15T11+p18T12)2 |
| 31 | 1−241655T2+28942573242T4−2264770361862706T6+12⋯57T8−55⋯07T10+18⋯20T12−55⋯07p6T14+12⋯57p12T16−2264770361862706p18T18+28942573242p24T20−241655p30T22+p36T24 |
| 37 | 1−419434T2+87929952639T4−11996835934207205T6+11⋯33T8−87⋯61T10+50⋯86T12−87⋯61p6T14+11⋯33p12T16−11996835934207205p18T18+87929952639p24T20−419434p30T22+p36T24 |
| 41 | 1−435796T2+88505255842T4−11683055467962385T6+12⋯47T8−10⋯94T10+79⋯91T12−10⋯94p6T14+12⋯47p12T16−11683055467962385p18T18+88505255842p24T20−435796p30T22+p36T24 |
| 43 | (1+428T+199837T2+75716384T3+36167871145T4+9851740849988T5+2980287990273901T6+9851740849988p3T7+36167871145p6T8+75716384p9T9+199837p12T10+428p15T11+p18T12)2 |
| 47 | 1−453138T2+135321770311T4−29047321613511285T6+49⋯41T8−67⋯21T10+76⋯02T12−67⋯21p6T14+49⋯41p12T16−29047321613511285p18T18+135321770311p24T20−453138p30T22+p36T24 |
| 53 | (1−89T+149636T2+19578912T3+11883866543T4−8498293720903T5+5004078025030288T6−8498293720903p3T7+11883866543p6T8+19578912p9T9+149636p12T10−89p15T11+p18T12)2 |
| 59 | 1−526184T2+141586970478T4−41662826122817849T6+13⋯71T8−29⋯54T10+57⋯15T12−29⋯54p6T14+13⋯71p12T16−41662826122817849p18T18+141586970478p24T20−526184p30T22+p36T24 |
| 61 | (1−1704T+1938703T2−1635367461T3+1162035618775T4−684320852667059T5+351976137165513138T6−684320852667059p3T7+1162035618775p6T8−1635367461p9T9+1938703p12T10−1704p15T11+p18T12)2 |
| 67 | 1−2608162T2+3205674513359T4−2491312924906790680T6+13⋯21T8−58⋯74T10+19⋯31T12−58⋯74p6T14+13⋯21p12T16−2491312924906790680p18T18+3205674513359p24T20−2608162p30T22+p36T24 |
| 71 | 1−1935299T2+2038830960730T4−1525475006651412638T6+89⋯49T8−42⋯91T10+16⋯92T12−42⋯91p6T14+89⋯49p12T16−1525475006651412638p18T18+2038830960730p24T20−1935299p30T22+p36T24 |
| 73 | 1−2935638T2+3898939340527T4−3093494767983198216T6+16⋯61T8−68⋯82T10+25⋯35T12−68⋯82p6T14+16⋯61p12T16−3093494767983198216p18T18+3898939340527p24T20−2935638p30T22+p36T24 |
| 79 | (1+875T+2505744T2+1612380868T3+2680533156433T4+1358001363523637T5+1672684167171147060T6+1358001363523637p3T7+2680533156433p6T8+1612380868p9T9+2505744p12T10+875p15T11+p18T12)2 |
| 83 | 1−3141070T2+5512039858027T4−6761964563893293052T6+64⋯49T8−48⋯54T10+30⋯95T12−48⋯54p6T14+64⋯49p12T16−6761964563893293052p18T18+5512039858027p24T20−3141070p30T22+p36T24 |
| 89 | 1−4477394T2+9702807750839T4−157611520547438048pT6+15⋯13T8−14⋯50T10+11⋯03T12−14⋯50p6T14+15⋯13p12T16−157611520547438048p19T18+9702807750839p24T20−4477394p30T22+p36T24 |
| 97 | 1−9021806T2+37946584520559T4−99120815383266274472T6+18⋯09T8−24⋯66T10+25⋯63T12−24⋯66p6T14+18⋯09p12T16−99120815383266274472p18T18+37946584520559p24T20−9021806p30T22+p36T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.57256431375112625004671972238, −3.19532046482596558335048873384, −3.09582884559210710658992061698, −3.00893219717186423791829373622, −2.97280603610110326183609912313, −2.75274305867495526505873189976, −2.69370145396242740628232150211, −2.64962447015437579581122543019, −2.48058402945167771498317618514, −2.42960978256932254725045077543, −2.26474035264718660882074867350, −2.15679130988256361183891440009, −1.98952499002397111435051654659, −1.87532970908653512016328609221, −1.81992222531118537882535967640, −1.79135427229283974094067989148, −1.18605597315673265785970175965, −1.12619515800567375010360624990, −1.07929394871725255604005261470, −1.02267305121868424474347496869, −0.965570939166470091265330792405, −0.44156958468892323436473299486, −0.25488733965988766285706209639, −0.23764842748265696170937952456, −0.04768520933474828476461476316,
0.04768520933474828476461476316, 0.23764842748265696170937952456, 0.25488733965988766285706209639, 0.44156958468892323436473299486, 0.965570939166470091265330792405, 1.02267305121868424474347496869, 1.07929394871725255604005261470, 1.12619515800567375010360624990, 1.18605597315673265785970175965, 1.79135427229283974094067989148, 1.81992222531118537882535967640, 1.87532970908653512016328609221, 1.98952499002397111435051654659, 2.15679130988256361183891440009, 2.26474035264718660882074867350, 2.42960978256932254725045077543, 2.48058402945167771498317618514, 2.64962447015437579581122543019, 2.69370145396242740628232150211, 2.75274305867495526505873189976, 2.97280603610110326183609912313, 3.00893219717186423791829373622, 3.09582884559210710658992061698, 3.19532046482596558335048873384, 3.57256431375112625004671972238
Plot not available for L-functions of degree greater than 10.