L(s) = 1 | + 6·19-s − 48·37-s + 16·64-s − 66·73-s − 12·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
L(s) = 1 | + 1.37·19-s − 7.89·37-s + 2·64-s − 7.72·73-s − 1.14·109-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + ⋯ |
Λ(s)=(=((372)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((372)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.056713256 |
L(21) |
≈ |
1.056713256 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | (1−p3T6+p6T12)2 |
| 5 | 1+236T6+40071T12+236p6T18+p12T24 |
| 7 | (1−34T3+813T6−34p3T9+p6T12)2 |
| 11 | 1+1712T6+1159383T12+1712p6T18+p12T24 |
| 13 | (1+38T3−753T6+38p3T9+p6T12)2 |
| 17 | (1+20T2+111T4+20p2T6+p4T8)3 |
| 19 | (1−8T+pT2)6(1+7T+pT2)6 |
| 23 | 1−520T6−147765489T12−520p6T18+p12T24 |
| 29 | 1+46478T6+1565381163T12+46478p6T18+p12T24 |
| 31 | (1+92T3−21327T6+92p3T9+p6T12)2 |
| 37 | (1+8T+27T2+8pT3+p2T4)6 |
| 41 | 1+97382T6+4733149683T12+97382p6T18+p12T24 |
| 43 | (1−88T3−71763T6−88p3T9+p6T12)2 |
| 47 | 1−13246T6−10603758813T12−13246p6T18+p12T24 |
| 53 | (1+52T2+p2T4)6 |
| 59 | 1−235312T6+13191203703T12−235312p6T18+p12T24 |
| 61 | (1−790T3+397119T6−790p3T9+p6T12)2 |
| 67 | (1+1064T3+831333T6+1064p3T9+p6T12)2 |
| 71 | (1−88T2+2703T4−88p2T6+p4T8)3 |
| 73 | (1+11T+48T2+11pT3+p2T4)6 |
| 79 | (1+1316T3+1238817T6+1316p3T9+p6T12)2 |
| 83 | 1+326576T6−220288489593T12+326576p6T18+p12T24 |
| 89 | (1−pT2+p2T4)6 |
| 97 | (1+1694T3+1956963T6+1694p3T9+p6T12)2 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.38820118557286355417146479891, −3.34856335420024081147512409483, −3.30087905215984719612479392837, −3.27034683558264249916914133659, −2.91097444701345467779875168704, −2.87677162167449744720379689589, −2.70296862158360008463576048151, −2.61337457262061862131272820235, −2.55284369076679863162709418970, −2.54071501279500209673692587599, −2.46559426982897407613324545775, −2.12438216014932638184035308650, −2.06588318468725458854096480770, −1.91186421346557494617224878107, −1.80280562456634389175073435232, −1.67425066860703962612759841841, −1.58199364083437925803951477050, −1.43767813133883439299441713143, −1.43262748222905769819619402922, −1.32740546626422994784308053203, −1.09503061048420658879406261007, −0.828688624491273752995699474596, −0.47832071229389434722840464672, −0.39185498606565115252436813155, −0.13300248356930204438894034282,
0.13300248356930204438894034282, 0.39185498606565115252436813155, 0.47832071229389434722840464672, 0.828688624491273752995699474596, 1.09503061048420658879406261007, 1.32740546626422994784308053203, 1.43262748222905769819619402922, 1.43767813133883439299441713143, 1.58199364083437925803951477050, 1.67425066860703962612759841841, 1.80280562456634389175073435232, 1.91186421346557494617224878107, 2.06588318468725458854096480770, 2.12438216014932638184035308650, 2.46559426982897407613324545775, 2.54071501279500209673692587599, 2.55284369076679863162709418970, 2.61337457262061862131272820235, 2.70296862158360008463576048151, 2.87677162167449744720379689589, 2.91097444701345467779875168704, 3.27034683558264249916914133659, 3.30087905215984719612479392837, 3.34856335420024081147512409483, 3.38820118557286355417146479891
Plot not available for L-functions of degree greater than 10.