L(s) = 1 | − 16·13-s + 8·37-s + 16·41-s + 8·61-s − 16·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 128·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
L(s) = 1 | − 16·13-s + 8·37-s + 16·41-s + 8·61-s − 16·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 128·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{32} \cdot 17^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 7^{32} \cdot 17^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5833902542\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5833902542\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{8} + T^{16} \) |
| 7 | \( 1 \) |
| 17 | \( 1 - T^{8} + T^{16} \) |
good | 3 | \( 1 - T^{16} + T^{32} \) |
| 5 | \( ( 1 - T^{4} + T^{8} )^{2}( 1 - T^{8} + T^{16} ) \) |
| 11 | \( 1 - T^{16} + T^{32} \) |
| 13 | \( ( 1 + T )^{16}( 1 + T^{2} )^{8} \) |
| 19 | \( ( 1 - T^{8} + T^{16} )^{2} \) |
| 23 | \( 1 - T^{16} + T^{32} \) |
| 29 | \( ( 1 + T^{4} )^{4}( 1 + T^{8} )^{2} \) |
| 31 | \( 1 - T^{16} + T^{32} \) |
| 37 | \( ( 1 - T + T^{2} )^{8}( 1 - T^{8} + T^{16} ) \) |
| 41 | \( ( 1 - T )^{16}( 1 + T^{8} )^{2} \) |
| 43 | \( ( 1 + T^{8} )^{4} \) |
| 47 | \( ( 1 - T^{4} + T^{8} )^{4} \) |
| 53 | \( ( 1 - T^{2} + T^{4} )^{4}( 1 - T^{4} + T^{8} )^{2} \) |
| 59 | \( ( 1 - T^{8} + T^{16} )^{2} \) |
| 61 | \( ( 1 - T + T^{2} )^{8}( 1 - T^{8} + T^{16} ) \) |
| 67 | \( ( 1 - T^{2} + T^{4} )^{8} \) |
| 71 | \( ( 1 + T^{16} )^{2} \) |
| 73 | \( ( 1 - T^{4} + T^{8} )^{2}( 1 - T^{8} + T^{16} ) \) |
| 79 | \( 1 - T^{16} + T^{32} \) |
| 83 | \( ( 1 + T^{8} )^{4} \) |
| 89 | \( ( 1 - T^{4} + T^{8} )^{4} \) |
| 97 | \( ( 1 + T^{4} )^{4}( 1 + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.46949338274332776133257898387, −2.44690739075334442720094291530, −2.40032011223918237020799365135, −2.29394091253661954429630664420, −2.19459518481256367512294349062, −2.10837191417237831268563741099, −2.06395770512259787839920617769, −2.01713412011958660145452404471, −1.78608899108506902513280801517, −1.77000008332226694898470075797, −1.75401684186257254299049495232, −1.68702568768526371249868466462, −1.66534477869315113410535826088, −1.24826894549178629095598830741, −1.22464392656625361570815943220, −1.15541141622206115605994105893, −1.06352760584071827954714501542, −1.01198060239078931750983454278, −0.977053880368121569984014656510, −0.819842699255900549429978681864, −0.64990024209747212235750578380, −0.60367659484654544932842997203, −0.59823070558453120155209330107, −0.48229656448719361807815991016, −0.22147116485545379211991940325,
0.22147116485545379211991940325, 0.48229656448719361807815991016, 0.59823070558453120155209330107, 0.60367659484654544932842997203, 0.64990024209747212235750578380, 0.819842699255900549429978681864, 0.977053880368121569984014656510, 1.01198060239078931750983454278, 1.06352760584071827954714501542, 1.15541141622206115605994105893, 1.22464392656625361570815943220, 1.24826894549178629095598830741, 1.66534477869315113410535826088, 1.68702568768526371249868466462, 1.75401684186257254299049495232, 1.77000008332226694898470075797, 1.78608899108506902513280801517, 2.01713412011958660145452404471, 2.06395770512259787839920617769, 2.10837191417237831268563741099, 2.19459518481256367512294349062, 2.29394091253661954429630664420, 2.40032011223918237020799365135, 2.44690739075334442720094291530, 2.46949338274332776133257898387
Plot not available for L-functions of degree greater than 10.