L(s) = 1 | + 2-s + 3-s − 5-s + 6-s − 7-s − 8-s − 10-s − 14-s − 15-s − 16-s − 21-s − 23-s − 24-s − 27-s + 29-s − 30-s + 35-s + 40-s + 41-s − 42-s + 2·43-s − 46-s − 47-s − 48-s + 49-s − 54-s + 56-s + ⋯ |
L(s) = 1 | + 2-s + 3-s − 5-s + 6-s − 7-s − 8-s − 10-s − 14-s − 15-s − 16-s − 21-s − 23-s − 24-s − 27-s + 29-s − 30-s + 35-s + 40-s + 41-s − 42-s + 2·43-s − 46-s − 47-s − 48-s + 49-s − 54-s + 56-s + ⋯ |
Λ(s)=(=(32400s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(32400s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
32400
= 24⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
0.00806973 |
Root analytic conductor: |
0.299719 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 32400, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
0.6674777657 |
L(21) |
≈ |
0.6674777657 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | C2 | 1−T+T2 |
| 5 | C2 | 1+T+T2 |
good | 7 | C1×C2 | (1+T)2(1−T+T2) |
| 11 | C2 | (1−T+T2)(1+T+T2) |
| 13 | C2 | (1−T+T2)(1+T+T2) |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C1×C1 | (1−T)2(1+T)2 |
| 23 | C1×C2 | (1+T)2(1−T+T2) |
| 29 | C1×C2 | (1−T)2(1+T+T2) |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C1×C1 | (1−T)2(1+T)2 |
| 41 | C1×C2 | (1−T)2(1+T+T2) |
| 43 | C2 | (1−T+T2)2 |
| 47 | C1×C2 | (1+T)2(1−T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C1×C2 | (1+T)2(1−T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C1×C2 | (1+T)2(1−T+T2) |
| 89 | C2 | (1+T+T2)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.25266003726459056934228925380, −12.63618427465138715563032354413, −12.34233518978514723443508067396, −11.93483636824218202361140453035, −11.32059066798460248258732799065, −10.87563652432827529726951676893, −9.877856881384228442551797346298, −9.755306957471470115556646605831, −9.052683058898347171661999093782, −8.548958346639384954526037770529, −8.175583683876575953362057897275, −7.48473382694494253624140028139, −6.99564495359185224065559830264, −5.96797693585416330644713210577, −5.96541110648486450872095668393, −4.86178503697550767939988741389, −4.02505199161513633549089042307, −3.87921310680456161343166166782, −3.01554335708622184459064059850, −2.52796415098278775375283093093,
2.52796415098278775375283093093, 3.01554335708622184459064059850, 3.87921310680456161343166166782, 4.02505199161513633549089042307, 4.86178503697550767939988741389, 5.96541110648486450872095668393, 5.96797693585416330644713210577, 6.99564495359185224065559830264, 7.48473382694494253624140028139, 8.175583683876575953362057897275, 8.548958346639384954526037770529, 9.052683058898347171661999093782, 9.755306957471470115556646605831, 9.877856881384228442551797346298, 10.87563652432827529726951676893, 11.32059066798460248258732799065, 11.93483636824218202361140453035, 12.34233518978514723443508067396, 12.63618427465138715563032354413, 13.25266003726459056934228925380