Properties

Label 4-2016e2-1.1-c0e2-0-0
Degree $4$
Conductor $4064256$
Sign $1$
Analytic cond. $1.01226$
Root an. cond. $1.00305$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 2·25-s + 3·49-s + 4·79-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  − 2·7-s − 2·25-s + 3·49-s + 4·79-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4064256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4064256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4064256\)    =    \(2^{10} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.01226\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4064256,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6811689998\)
\(L(\frac12)\) \(\approx\) \(0.6811689998\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$ \( ( 1 - T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.495310512200955285690241385389, −9.184846187043044996609270817019, −9.014765985635509530895120500123, −8.337619330154305861744496684188, −7.80306595517540421809179504285, −7.74788973017738012710123004685, −7.14006411746874194488288859304, −6.55357011788315050274679739283, −6.52773866848835795180167618863, −6.09360191673279763545066861955, −5.53941744994314085129589988784, −5.33046400505539845807778232187, −4.63944256059288244050083158848, −3.95556161752243989093016531374, −3.79327996602954626710338760874, −3.36931326510326565572313214757, −2.73611361457109315837454974343, −2.35225331424319618699330017654, −1.66556939907532007794522363574, −0.58263347340642125748447033325, 0.58263347340642125748447033325, 1.66556939907532007794522363574, 2.35225331424319618699330017654, 2.73611361457109315837454974343, 3.36931326510326565572313214757, 3.79327996602954626710338760874, 3.95556161752243989093016531374, 4.63944256059288244050083158848, 5.33046400505539845807778232187, 5.53941744994314085129589988784, 6.09360191673279763545066861955, 6.52773866848835795180167618863, 6.55357011788315050274679739283, 7.14006411746874194488288859304, 7.74788973017738012710123004685, 7.80306595517540421809179504285, 8.337619330154305861744496684188, 9.014765985635509530895120500123, 9.184846187043044996609270817019, 9.495310512200955285690241385389

Graph of the $Z$-function along the critical line