L(s) = 1 | − 2·7-s − 2·25-s + 3·49-s + 4·79-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
L(s) = 1 | − 2·7-s − 2·25-s + 3·49-s + 4·79-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4064256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4064256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6811689998\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6811689998\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 7 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 5 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 17 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 19 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 31 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 37 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 41 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 43 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 47 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 53 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 67 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 71 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 73 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 79 | $C_1$ | \( ( 1 - T )^{4} \) |
| 83 | $C_2$ | \( ( 1 + T^{2} )^{2} \) |
| 89 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
| 97 | $C_1$$\times$$C_1$ | \( ( 1 - T )^{2}( 1 + T )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.495310512200955285690241385389, −9.184846187043044996609270817019, −9.014765985635509530895120500123, −8.337619330154305861744496684188, −7.80306595517540421809179504285, −7.74788973017738012710123004685, −7.14006411746874194488288859304, −6.55357011788315050274679739283, −6.52773866848835795180167618863, −6.09360191673279763545066861955, −5.53941744994314085129589988784, −5.33046400505539845807778232187, −4.63944256059288244050083158848, −3.95556161752243989093016531374, −3.79327996602954626710338760874, −3.36931326510326565572313214757, −2.73611361457109315837454974343, −2.35225331424319618699330017654, −1.66556939907532007794522363574, −0.58263347340642125748447033325,
0.58263347340642125748447033325, 1.66556939907532007794522363574, 2.35225331424319618699330017654, 2.73611361457109315837454974343, 3.36931326510326565572313214757, 3.79327996602954626710338760874, 3.95556161752243989093016531374, 4.63944256059288244050083158848, 5.33046400505539845807778232187, 5.53941744994314085129589988784, 6.09360191673279763545066861955, 6.52773866848835795180167618863, 6.55357011788315050274679739283, 7.14006411746874194488288859304, 7.74788973017738012710123004685, 7.80306595517540421809179504285, 8.337619330154305861744496684188, 9.014765985635509530895120500123, 9.184846187043044996609270817019, 9.495310512200955285690241385389