Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2016,1,Mod(433,2016)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2016, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2016.433");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2016.l (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 504) |
Projective image: | |
Projective field: | Galois closure of |
Artin image: | |
Artin field: | Galois closure of 8.0.1792336896.7 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | CM by |
24.h | odd | 2 | 1 | CM by |
168.i | even | 2 | 1 | RM by |
3.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
56.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2016.1.l.b | 2 | |
3.b | odd | 2 | 1 | inner | 2016.1.l.b | 2 | |
4.b | odd | 2 | 1 | 504.1.l.b | ✓ | 2 | |
7.b | odd | 2 | 1 | CM | 2016.1.l.b | 2 | |
8.b | even | 2 | 1 | inner | 2016.1.l.b | 2 | |
8.d | odd | 2 | 1 | 504.1.l.b | ✓ | 2 | |
12.b | even | 2 | 1 | 504.1.l.b | ✓ | 2 | |
21.c | even | 2 | 1 | inner | 2016.1.l.b | 2 | |
24.f | even | 2 | 1 | 504.1.l.b | ✓ | 2 | |
24.h | odd | 2 | 1 | CM | 2016.1.l.b | 2 | |
28.d | even | 2 | 1 | 504.1.l.b | ✓ | 2 | |
28.f | even | 6 | 2 | 3528.1.bw.b | 4 | ||
28.g | odd | 6 | 2 | 3528.1.bw.b | 4 | ||
56.e | even | 2 | 1 | 504.1.l.b | ✓ | 2 | |
56.h | odd | 2 | 1 | inner | 2016.1.l.b | 2 | |
56.k | odd | 6 | 2 | 3528.1.bw.b | 4 | ||
56.m | even | 6 | 2 | 3528.1.bw.b | 4 | ||
84.h | odd | 2 | 1 | 504.1.l.b | ✓ | 2 | |
84.j | odd | 6 | 2 | 3528.1.bw.b | 4 | ||
84.n | even | 6 | 2 | 3528.1.bw.b | 4 | ||
168.e | odd | 2 | 1 | 504.1.l.b | ✓ | 2 | |
168.i | even | 2 | 1 | RM | 2016.1.l.b | 2 | |
168.v | even | 6 | 2 | 3528.1.bw.b | 4 | ||
168.be | odd | 6 | 2 | 3528.1.bw.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.1.l.b | ✓ | 2 | 4.b | odd | 2 | 1 | |
504.1.l.b | ✓ | 2 | 8.d | odd | 2 | 1 | |
504.1.l.b | ✓ | 2 | 12.b | even | 2 | 1 | |
504.1.l.b | ✓ | 2 | 24.f | even | 2 | 1 | |
504.1.l.b | ✓ | 2 | 28.d | even | 2 | 1 | |
504.1.l.b | ✓ | 2 | 56.e | even | 2 | 1 | |
504.1.l.b | ✓ | 2 | 84.h | odd | 2 | 1 | |
504.1.l.b | ✓ | 2 | 168.e | odd | 2 | 1 | |
2016.1.l.b | 2 | 1.a | even | 1 | 1 | trivial | |
2016.1.l.b | 2 | 3.b | odd | 2 | 1 | inner | |
2016.1.l.b | 2 | 7.b | odd | 2 | 1 | CM | |
2016.1.l.b | 2 | 8.b | even | 2 | 1 | inner | |
2016.1.l.b | 2 | 21.c | even | 2 | 1 | inner | |
2016.1.l.b | 2 | 24.h | odd | 2 | 1 | CM | |
2016.1.l.b | 2 | 56.h | odd | 2 | 1 | inner | |
2016.1.l.b | 2 | 168.i | even | 2 | 1 | RM | |
3528.1.bw.b | 4 | 28.f | even | 6 | 2 | ||
3528.1.bw.b | 4 | 28.g | odd | 6 | 2 | ||
3528.1.bw.b | 4 | 56.k | odd | 6 | 2 | ||
3528.1.bw.b | 4 | 56.m | even | 6 | 2 | ||
3528.1.bw.b | 4 | 84.j | odd | 6 | 2 | ||
3528.1.bw.b | 4 | 84.n | even | 6 | 2 | ||
3528.1.bw.b | 4 | 168.v | even | 6 | 2 | ||
3528.1.bw.b | 4 | 168.be | odd | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .