L(s) = 1 | + 3·4-s + 2·5-s − 9-s − 12·11-s + 5·16-s + 12·19-s + 6·20-s − 25-s + 4·29-s − 20·31-s − 3·36-s + 4·41-s − 36·44-s − 2·45-s − 49-s − 24·55-s + 16·59-s − 4·61-s + 3·64-s + 20·71-s + 36·76-s − 8·79-s + 10·80-s + 81-s − 12·89-s + 24·95-s + 12·99-s + ⋯ |
L(s) = 1 | + 3/2·4-s + 0.894·5-s − 1/3·9-s − 3.61·11-s + 5/4·16-s + 2.75·19-s + 1.34·20-s − 1/5·25-s + 0.742·29-s − 3.59·31-s − 1/2·36-s + 0.624·41-s − 5.42·44-s − 0.298·45-s − 1/7·49-s − 3.23·55-s + 2.08·59-s − 0.512·61-s + 3/8·64-s + 2.37·71-s + 4.12·76-s − 0.900·79-s + 1.11·80-s + 1/9·81-s − 1.27·89-s + 2.46·95-s + 1.20·99-s + ⋯ |
Λ(s)=(=(11025s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11025s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11025
= 32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
0.702963 |
Root analytic conductor: |
0.915657 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11025, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.348340487 |
L(21) |
≈ |
1.348340487 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+T2 |
| 5 | C2 | 1−2T+pT2 |
| 7 | C2 | 1+T2 |
good | 2 | C22 | 1−3T2+p2T4 |
| 11 | C2 | (1+6T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C22 | 1−18T2+p2T4 |
| 19 | C2 | (1−6T+pT2)2 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1+10T+pT2)2 |
| 37 | C22 | 1−58T2+p2T4 |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C22 | 1+122T2+p2T4 |
| 71 | C2 | (1−10T+pT2)2 |
| 73 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C22 | 1−102T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−190T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.07765741036902913605419866632, −13.34777610896378407247861108327, −13.03878561228530477495552939210, −12.59576519015341727507158702442, −11.86948020238545760806007327417, −11.27433118061208772548131650751, −10.69192697832386041230196696032, −10.65843719583477371813672800041, −9.704083858777687059690286950373, −9.590614160303390257499736002489, −8.370119229283450604227174471651, −7.77449242194542902577294645997, −7.40285334522283855310331904915, −6.96295836787847011215570227142, −5.66673716415926716727854405042, −5.53092384774540902824306223888, −5.20934549967759721253207672094, −3.31926418578659151487141795523, −2.70173620439600678454391775595, −2.06135419027838012408223731157,
2.06135419027838012408223731157, 2.70173620439600678454391775595, 3.31926418578659151487141795523, 5.20934549967759721253207672094, 5.53092384774540902824306223888, 5.66673716415926716727854405042, 6.96295836787847011215570227142, 7.40285334522283855310331904915, 7.77449242194542902577294645997, 8.370119229283450604227174471651, 9.590614160303390257499736002489, 9.704083858777687059690286950373, 10.65843719583477371813672800041, 10.69192697832386041230196696032, 11.27433118061208772548131650751, 11.86948020238545760806007327417, 12.59576519015341727507158702442, 13.03878561228530477495552939210, 13.34777610896378407247861108327, 14.07765741036902913605419866632