L(s) = 1 | − 2·2-s − 3·3-s + 4-s − 3·5-s + 6·6-s + 3·9-s + 6·10-s − 3·11-s − 3·12-s + 5·13-s + 9·15-s + 16-s − 6·18-s − 8·19-s − 3·20-s + 6·22-s + 23-s + 4·25-s − 10·26-s − 4·29-s − 18·30-s − 31-s + 2·32-s + 9·33-s + 3·36-s − 7·37-s + 16·38-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.73·3-s + 1/2·4-s − 1.34·5-s + 2.44·6-s + 9-s + 1.89·10-s − 0.904·11-s − 0.866·12-s + 1.38·13-s + 2.32·15-s + 1/4·16-s − 1.41·18-s − 1.83·19-s − 0.670·20-s + 1.27·22-s + 0.208·23-s + 4/5·25-s − 1.96·26-s − 0.742·29-s − 3.28·30-s − 0.179·31-s + 0.353·32-s + 1.56·33-s + 1/2·36-s − 1.15·37-s + 2.59·38-s + ⋯ |
Λ(s)=(=(1091s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1091s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1091
|
Sign: |
−1
|
Analytic conductor: |
0.0695631 |
Root analytic conductor: |
0.513564 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1091, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 1091 | C1×C2 | (1−T)(1+21T+pT2) |
good | 2 | D4 | 1+pT+3T2+p2T3+p2T4 |
| 3 | C2 | (1+pT2)(1+pT+pT2) |
| 5 | D4 | 1+3T+pT2+3pT3+p2T4 |
| 7 | C22 | 1+6T2+p2T4 |
| 11 | D4 | 1+3T+10T2+3pT3+p2T4 |
| 13 | D4 | 1−5T+19T2−5pT3+p2T4 |
| 17 | C22 | 1−10T2+p2T4 |
| 19 | D4 | 1+8T+52T2+8pT3+p2T4 |
| 23 | C2×C2 | (1−5T+pT2)(1+4T+pT2) |
| 29 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 31 | D4 | 1+T−42T2+pT3+p2T4 |
| 37 | D4 | 1+7T+58T2+7pT3+p2T4 |
| 41 | C22 | 1−2T2+p2T4 |
| 43 | C2×C2 | (1+pT2)(1+5T+pT2) |
| 47 | D4 | 1+2T+60T2+2pT3+p2T4 |
| 53 | D4 | 1−12T+134T2−12pT3+p2T4 |
| 59 | D4 | 1+3T+83T2+3pT3+p2T4 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | D4 | 1−7T+109T2−7pT3+p2T4 |
| 71 | C22 | 1+54T2+p2T4 |
| 73 | D4 | 1−T+85T2−pT3+p2T4 |
| 79 | D4 | 1−3T−45T2−3pT3+p2T4 |
| 83 | D4 | 1−T−86T2−pT3+p2T4 |
| 89 | D4 | 1+2T−24T2+2pT3+p2T4 |
| 97 | D4 | 1−2T−2T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.8087339679, −19.2927698249, −18.7588261401, −18.4252657333, −17.9325643653, −17.3940434538, −16.8904747008, −16.4983732150, −15.8702950967, −15.3577164109, −14.8289717289, −13.5671344301, −12.9058210635, −12.2374732596, −11.5873611136, −11.0546519721, −10.7201337516, −10.0391382416, −8.86324040146, −8.45331855624, −7.82014337708, −6.75157269231, −5.99604896663, −5.03981995913, −3.82540183589, 0,
3.82540183589, 5.03981995913, 5.99604896663, 6.75157269231, 7.82014337708, 8.45331855624, 8.86324040146, 10.0391382416, 10.7201337516, 11.0546519721, 11.5873611136, 12.2374732596, 12.9058210635, 13.5671344301, 14.8289717289, 15.3577164109, 15.8702950967, 16.4983732150, 16.8904747008, 17.3940434538, 17.9325643653, 18.4252657333, 18.7588261401, 19.2927698249, 19.8087339679