L(s) = 1 | − 2-s + 4-s + 5-s − 8-s + 4·9-s − 10-s − 3·13-s + 16-s − 4·18-s + 20-s − 4·25-s + 3·26-s − 32-s + 4·36-s − 8·37-s − 40-s − 9·41-s + 4·45-s + 5·49-s + 4·50-s − 3·52-s − 7·53-s + 5·61-s + 64-s − 3·65-s − 4·72-s + 8·74-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s + 4/3·9-s − 0.316·10-s − 0.832·13-s + 1/4·16-s − 0.942·18-s + 0.223·20-s − 4/5·25-s + 0.588·26-s − 0.176·32-s + 2/3·36-s − 1.31·37-s − 0.158·40-s − 1.40·41-s + 0.596·45-s + 5/7·49-s + 0.565·50-s − 0.416·52-s − 0.961·53-s + 0.640·61-s + 1/8·64-s − 0.372·65-s − 0.471·72-s + 0.929·74-s + ⋯ |
Λ(s)=(=(1095200s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1095200s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1095200
= 25⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
69.8309 |
Root analytic conductor: |
2.89075 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1095200, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 5 | C2 | 1−T+pT2 |
| 37 | C2 | 1+8T+pT2 |
good | 3 | C22 | 1−4T2+p2T4 |
| 7 | C22 | 1−5T2+p2T4 |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+5T+pT2) |
| 17 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 19 | C22 | 1+18T2+p2T4 |
| 23 | C22 | 1−19T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C22 | 1+3T2+p2T4 |
| 41 | C2×C2 | (1+2T+pT2)(1+7T+pT2) |
| 43 | C22 | 1+40T2+p2T4 |
| 47 | C22 | 1−23T2+p2T4 |
| 53 | C2×C2 | (1−4T+pT2)(1+11T+pT2) |
| 59 | C22 | 1−104T2+p2T4 |
| 61 | C2×C2 | (1−13T+pT2)(1+8T+pT2) |
| 67 | C22 | 1+10T2+p2T4 |
| 71 | C22 | 1+15T2+p2T4 |
| 73 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 79 | C22 | 1−17T2+p2T4 |
| 83 | C22 | 1+34T2+p2T4 |
| 89 | C2×C2 | (1+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.72046659580019593313543126522, −7.44233739171997135907955976169, −7.10477651159503319675021511502, −6.59418048139677526840874061479, −6.32835214985814926083945823243, −5.58984240437669804435224876506, −5.22759714613272812709239763260, −4.73085134156516446637164026689, −4.15671404059170282010540179471, −3.63536360159906566313247530381, −3.03424934942362814097272611877, −2.24854289456122829340209902841, −1.82870692585144507262393023918, −1.20507569496527294566002758393, 0,
1.20507569496527294566002758393, 1.82870692585144507262393023918, 2.24854289456122829340209902841, 3.03424934942362814097272611877, 3.63536360159906566313247530381, 4.15671404059170282010540179471, 4.73085134156516446637164026689, 5.22759714613272812709239763260, 5.58984240437669804435224876506, 6.32835214985814926083945823243, 6.59418048139677526840874061479, 7.10477651159503319675021511502, 7.44233739171997135907955976169, 7.72046659580019593313543126522