L(s) = 1 | + 2-s + 4-s + 8-s + 4·9-s + 2·13-s + 16-s − 15·17-s + 4·18-s − 5·25-s + 2·26-s + 32-s − 15·34-s + 4·36-s + 2·41-s − 5·49-s − 5·50-s + 2·52-s + 5·53-s − 12·61-s + 64-s − 15·68-s + 4·72-s − 6·73-s + 7·81-s + 2·82-s − 21·89-s + 12·97-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s + 4/3·9-s + 0.554·13-s + 1/4·16-s − 3.63·17-s + 0.942·18-s − 25-s + 0.392·26-s + 0.176·32-s − 2.57·34-s + 2/3·36-s + 0.312·41-s − 5/7·49-s − 0.707·50-s + 0.277·52-s + 0.686·53-s − 1.53·61-s + 1/8·64-s − 1.81·68-s + 0.471·72-s − 0.702·73-s + 7/9·81-s + 0.220·82-s − 2.22·89-s + 1.21·97-s + ⋯ |
Λ(s)=(=(1095200s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1095200s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1095200
= 25⋅52⋅372
|
Sign: |
−1
|
Analytic conductor: |
69.8309 |
Root analytic conductor: |
2.89075 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1095200, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C2 | 1+pT2 |
| 37 | C2 | 1+pT2 |
good | 3 | C22 | 1−4T2+p2T4 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 17 | C2×C2 | (1+7T+pT2)(1+8T+pT2) |
| 19 | C22 | 1+6T2+p2T4 |
| 23 | C22 | 1+16T2+p2T4 |
| 29 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 31 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2×C2 | (1−6T+pT2)(1+4T+pT2) |
| 43 | C22 | 1−59T2+p2T4 |
| 47 | C22 | 1+71T2+p2T4 |
| 53 | C2×C2 | (1−10T+pT2)(1+5T+pT2) |
| 59 | C22 | 1+45T2+p2T4 |
| 61 | C2×C2 | (1−3T+pT2)(1+15T+pT2) |
| 67 | C22 | 1+8T2+p2T4 |
| 71 | C22 | 1+25T2+p2T4 |
| 73 | C2×C2 | (1−T+pT2)(1+7T+pT2) |
| 79 | C22 | 1−96T2+p2T4 |
| 83 | C22 | 1+74T2+p2T4 |
| 89 | C2×C2 | (1+10T+pT2)(1+11T+pT2) |
| 97 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85352427209644252529875878279, −7.12326560527005019959983901029, −6.99608647630267093889034553384, −6.50482716048609744203410300214, −6.20509494638406742355830022524, −5.67833703367200168513113101759, −4.98540935785926339874018105138, −4.51185622749849948715272631835, −4.20485736101064834491331654886, −3.97713276546627912326365603184, −3.16050582969469397645827641236, −2.43068626843707114376811070245, −1.98823024842304050204700776123, −1.39584241770973838484214809799, 0,
1.39584241770973838484214809799, 1.98823024842304050204700776123, 2.43068626843707114376811070245, 3.16050582969469397645827641236, 3.97713276546627912326365603184, 4.20485736101064834491331654886, 4.51185622749849948715272631835, 4.98540935785926339874018105138, 5.67833703367200168513113101759, 6.20509494638406742355830022524, 6.50482716048609744203410300214, 6.99608647630267093889034553384, 7.12326560527005019959983901029, 7.85352427209644252529875878279