Properties

Label 4-1095200-1.1-c1e2-0-14
Degree $4$
Conductor $1095200$
Sign $-1$
Analytic cond. $69.8309$
Root an. cond. $2.89075$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 4·9-s + 2·13-s + 16-s − 15·17-s + 4·18-s − 5·25-s + 2·26-s + 32-s − 15·34-s + 4·36-s + 2·41-s − 5·49-s − 5·50-s + 2·52-s + 5·53-s − 12·61-s + 64-s − 15·68-s + 4·72-s − 6·73-s + 7·81-s + 2·82-s − 21·89-s + 12·97-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 4/3·9-s + 0.554·13-s + 1/4·16-s − 3.63·17-s + 0.942·18-s − 25-s + 0.392·26-s + 0.176·32-s − 2.57·34-s + 2/3·36-s + 0.312·41-s − 5/7·49-s − 0.707·50-s + 0.277·52-s + 0.686·53-s − 1.53·61-s + 1/8·64-s − 1.81·68-s + 0.471·72-s − 0.702·73-s + 7/9·81-s + 0.220·82-s − 2.22·89-s + 1.21·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1095200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1095200\)    =    \(2^{5} \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(69.8309\)
Root analytic conductor: \(2.89075\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1095200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_2$ \( 1 + p T^{2} \)
37$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 59 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 71 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 45 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 96 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85352427209644252529875878279, −7.12326560527005019959983901029, −6.99608647630267093889034553384, −6.50482716048609744203410300214, −6.20509494638406742355830022524, −5.67833703367200168513113101759, −4.98540935785926339874018105138, −4.51185622749849948715272631835, −4.20485736101064834491331654886, −3.97713276546627912326365603184, −3.16050582969469397645827641236, −2.43068626843707114376811070245, −1.98823024842304050204700776123, −1.39584241770973838484214809799, 0, 1.39584241770973838484214809799, 1.98823024842304050204700776123, 2.43068626843707114376811070245, 3.16050582969469397645827641236, 3.97713276546627912326365603184, 4.20485736101064834491331654886, 4.51185622749849948715272631835, 4.98540935785926339874018105138, 5.67833703367200168513113101759, 6.20509494638406742355830022524, 6.50482716048609744203410300214, 6.99608647630267093889034553384, 7.12326560527005019959983901029, 7.85352427209644252529875878279

Graph of the $Z$-function along the critical line