L(s) = 1 | + 2-s + 4-s + 2·5-s + 8-s + 2·9-s + 2·10-s − 4·13-s + 16-s + 8·17-s + 2·18-s + 2·20-s + 3·25-s − 4·26-s − 8·29-s + 32-s + 8·34-s + 2·36-s + 2·37-s + 2·40-s + 12·41-s + 4·45-s + 6·49-s + 3·50-s − 4·52-s − 8·58-s + 64-s − 8·65-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 2/3·9-s + 0.632·10-s − 1.10·13-s + 1/4·16-s + 1.94·17-s + 0.471·18-s + 0.447·20-s + 3/5·25-s − 0.784·26-s − 1.48·29-s + 0.176·32-s + 1.37·34-s + 1/3·36-s + 0.328·37-s + 0.316·40-s + 1.87·41-s + 0.596·45-s + 6/7·49-s + 0.424·50-s − 0.554·52-s − 1.05·58-s + 1/8·64-s − 0.992·65-s + ⋯ |
Λ(s)=(=(1095200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1095200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1095200
= 25⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
69.8309 |
Root analytic conductor: |
2.89075 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1095200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.556794423 |
L(21) |
≈ |
4.556794423 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 5 | C1 | (1−T)2 |
| 37 | C1 | (1−T)2 |
good | 3 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1−6T2+p2T4 |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 17 | C2×C2 | (1−6T+pT2)(1−2T+pT2) |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 31 | C22 | 1−50T2+p2T4 |
| 41 | C2×C2 | (1−10T+pT2)(1−2T+pT2) |
| 43 | C22 | 1−10T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C22 | 1−70T2+p2T4 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C22 | 1−26T2+p2T4 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | C2×C2 | (1−10T+pT2)(1+6T+pT2) |
| 79 | C22 | 1−106T2+p2T4 |
| 83 | C22 | 1−82T2+p2T4 |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80021022775430441531408809226, −7.58585527266948775876736657933, −7.20552315909597070533843902842, −6.78427025973501634097775334182, −6.15946106985185681748568436970, −5.67352503947890013636487329766, −5.51832655236226650629974468909, −5.04167159885489444977418212712, −4.37479970783640735547939347351, −4.04847985564756178140577258055, −3.35555804325760842479407023818, −2.83908832562660018083042083258, −2.26278253704023129981768029003, −1.66833694381427609691398347883, −0.905375457934824433129038326127,
0.905375457934824433129038326127, 1.66833694381427609691398347883, 2.26278253704023129981768029003, 2.83908832562660018083042083258, 3.35555804325760842479407023818, 4.04847985564756178140577258055, 4.37479970783640735547939347351, 5.04167159885489444977418212712, 5.51832655236226650629974468909, 5.67352503947890013636487329766, 6.15946106985185681748568436970, 6.78427025973501634097775334182, 7.20552315909597070533843902842, 7.58585527266948775876736657933, 7.80021022775430441531408809226