Properties

Label 4-10e2-1.1-c25e2-0-2
Degree 44
Conductor 100100
Sign 11
Analytic cond. 1568.131568.13
Root an. cond. 6.292826.29282
Motivic weight 2525
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 22

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.19e3·2-s + 5.45e5·3-s + 5.03e7·4-s − 4.88e8·5-s − 4.46e9·6-s + 3.85e10·7-s − 2.74e11·8-s − 5.21e11·9-s + 4.00e12·10-s − 8.37e12·11-s + 2.74e13·12-s − 1.49e14·13-s − 3.15e14·14-s − 2.66e14·15-s + 1.40e15·16-s + 3.35e15·17-s + 4.27e15·18-s + 3.48e15·19-s − 2.45e16·20-s + 2.10e16·21-s + 6.86e16·22-s + 7.23e16·23-s − 1.49e17·24-s + 1.78e17·25-s + 1.22e18·26-s − 2.69e17·27-s + 1.94e18·28-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.592·3-s + 3/2·4-s − 0.894·5-s − 0.837·6-s + 1.05·7-s − 1.41·8-s − 0.616·9-s + 1.26·10-s − 0.804·11-s + 0.888·12-s − 1.77·13-s − 1.48·14-s − 0.529·15-s + 5/4·16-s + 1.39·17-s + 0.871·18-s + 0.361·19-s − 1.34·20-s + 0.623·21-s + 1.13·22-s + 0.688·23-s − 0.837·24-s + 3/5·25-s + 2.51·26-s − 0.345·27-s + 1.57·28-s + ⋯

Functional equation

Λ(s)=(100s/2ΓC(s)2L(s)=(Λ(26s)\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}
Λ(s)=(100s/2ΓC(s+25/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\C}(s+25/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 100100    =    22522^{2} \cdot 5^{2}
Sign: 11
Analytic conductor: 1568.131568.13
Root analytic conductor: 6.292826.29282
Motivic weight: 2525
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 22
Selberg data: (4, 100, ( :25/2,25/2), 1)(4,\ 100,\ (\ :25/2, 25/2),\ 1)

Particular Values

L(13)L(13) == 00
L(12)L(\frac12) == 00
L(272)L(\frac{27}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C1C_1 (1+p12T)2 ( 1 + p^{12} T )^{2}
5C1C_1 (1+p12T)2 ( 1 + p^{12} T )^{2}
good3D4D_{4} 1545212T+30341164286p3T2545212p25T3+p50T4 1 - 545212 T + 30341164286 p^{3} T^{2} - 545212 p^{25} T^{3} + p^{50} T^{4}
7D4D_{4} 15509693852pT+1105473550077933138p4T25509693852p26T3+p50T4 1 - 5509693852 p T + 1105473550077933138 p^{4} T^{2} - 5509693852 p^{26} T^{3} + p^{50} T^{4}
11D4D_{4} 1+8379169876416T+ 1 + 8379169876416 T + 95 ⁣ ⁣4695\!\cdots\!46p2T2+8379169876416p25T3+p50T4 p^{2} T^{2} + 8379169876416 p^{25} T^{3} + p^{50} T^{4}
13D4D_{4} 1+11495672092076pT+ 1 + 11495672092076 p T + 87 ⁣ ⁣3887\!\cdots\!38p2T2+11495672092076p26T3+p50T4 p^{2} T^{2} + 11495672092076 p^{26} T^{3} + p^{50} T^{4}
17D4D_{4} 13359254299255924T+ 1 - 3359254299255924 T + 83 ⁣ ⁣7483\!\cdots\!74pT23359254299255924p25T3+p50T4 p T^{2} - 3359254299255924 p^{25} T^{3} + p^{50} T^{4}
19D4D_{4} 1183655863992680pT+ 1 - 183655863992680 p T + 15 ⁣ ⁣1815\!\cdots\!18p2T2183655863992680p26T3+p50T4 p^{2} T^{2} - 183655863992680 p^{26} T^{3} + p^{50} T^{4}
23D4D_{4} 13146530518609684pT+ 1 - 3146530518609684 p T + 36 ⁣ ⁣9836\!\cdots\!98p2T23146530518609684p26T3+p50T4 p^{2} T^{2} - 3146530518609684 p^{26} T^{3} + p^{50} T^{4}
29D4D_{4} 1+537443787959856180T+ 1 + 537443787959856180 T + 60 ⁣ ⁣9860\!\cdots\!98T2+537443787959856180p25T3+p50T4 T^{2} + 537443787959856180 p^{25} T^{3} + p^{50} T^{4}
31D4D_{4} 1+3624027784441312136T+ 1 + 3624027784441312136 T + 39 ⁣ ⁣2639\!\cdots\!26T2+3624027784441312136p25T3+p50T4 T^{2} + 3624027784441312136 p^{25} T^{3} + p^{50} T^{4}
37D4D_{4} 1514556017957936372pT+ 1 - 514556017957936372 p T + 16 ⁣ ⁣3816\!\cdots\!38T2514556017957936372p26T3+p50T4 T^{2} - 514556017957936372 p^{26} T^{3} + p^{50} T^{4}
41D4D_{4} 1+ 1 + 21 ⁣ ⁣5621\!\cdots\!56T+ T + 52 ⁣ ⁣8652\!\cdots\!86T2+ T^{2} + 21 ⁣ ⁣5621\!\cdots\!56p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
43D4D_{4} 1+13668418927657846868T+ 1 + 13668418927657846868 T + 12 ⁣ ⁣4212\!\cdots\!42T2+13668418927657846868p25T3+p50T4 T^{2} + 13668418927657846868 p^{25} T^{3} + p^{50} T^{4}
47D4D_{4} 1+ 1 + 16 ⁣ ⁣5616\!\cdots\!56T+ T + 19 ⁣ ⁣9819\!\cdots\!98T2+ T^{2} + 16 ⁣ ⁣5616\!\cdots\!56p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
53D4D_{4} 1+ 1 + 99 ⁣ ⁣4899\!\cdots\!48T+ T + 47 ⁣ ⁣6247\!\cdots\!62T2+ T^{2} + 99 ⁣ ⁣4899\!\cdots\!48p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
59D4D_{4} 1+ 1 + 13 ⁣ ⁣6013\!\cdots\!60T+ T + 39 ⁣ ⁣9839\!\cdots\!98T2+ T^{2} + 13 ⁣ ⁣6013\!\cdots\!60p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
61D4D_{4} 1 1 - 11 ⁣ ⁣2411\!\cdots\!24T T - 13 ⁣ ⁣5413\!\cdots\!54T2 T^{2} - 11 ⁣ ⁣2411\!\cdots\!24p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
67D4D_{4} 1 1 - 95 ⁣ ⁣4495\!\cdots\!44T+ T + 11 ⁣ ⁣9811\!\cdots\!98T2 T^{2} - 95 ⁣ ⁣4495\!\cdots\!44p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
71D4D_{4} 1 1 - 83 ⁣ ⁣2483\!\cdots\!24T+ T + 34 ⁣ ⁣4634\!\cdots\!46T2 T^{2} - 83 ⁣ ⁣2483\!\cdots\!24p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
73D4D_{4} 1 1 - 19 ⁣ ⁣7219\!\cdots\!72T+ T + 43 ⁣ ⁣8243\!\cdots\!82T2 T^{2} - 19 ⁣ ⁣7219\!\cdots\!72p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
79D4D_{4} 1 1 - 10 ⁣ ⁣4010\!\cdots\!40T+ T + 51 ⁣ ⁣9851\!\cdots\!98T2 T^{2} - 10 ⁣ ⁣4010\!\cdots\!40p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
83D4D_{4} 1+ 1 + 59 ⁣ ⁣4859\!\cdots\!48T+ T + 59 ⁣ ⁣6259\!\cdots\!62T2+ T^{2} + 59 ⁣ ⁣4859\!\cdots\!48p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
89D4D_{4} 1+ 1 + 18 ⁣ ⁣2018\!\cdots\!20T+ T + 11 ⁣ ⁣9811\!\cdots\!98T2+ T^{2} + 18 ⁣ ⁣2018\!\cdots\!20p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
97D4D_{4} 1+ 1 + 11 ⁣ ⁣3611\!\cdots\!36T+ T + 12 ⁣ ⁣3812\!\cdots\!38T2+ T^{2} + 11 ⁣ ⁣3611\!\cdots\!36p25T3+p50T4 p^{25} T^{3} + p^{50} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.57160202439533757262151841499, −14.30587599613203452273981982122, −12.76376272715006114510808486289, −12.14663262218137303556212539135, −11.32600843163379472079279165960, −10.98159554784362422401248329837, −9.832588671207865702563175028514, −9.492537646922989460941385155021, −8.257850168107581819790151845900, −8.062759499573733997825898143470, −7.58484558598131789183616466707, −6.76482799512350825123723644684, −5.30279706047964826348639516612, −4.86923100680976881261401695389, −3.28026065029470894403981133412, −2.92572635266540744950986274490, −1.94108107346812939052426865663, −1.25014930358597200731379863363, 0, 0, 1.25014930358597200731379863363, 1.94108107346812939052426865663, 2.92572635266540744950986274490, 3.28026065029470894403981133412, 4.86923100680976881261401695389, 5.30279706047964826348639516612, 6.76482799512350825123723644684, 7.58484558598131789183616466707, 8.062759499573733997825898143470, 8.257850168107581819790151845900, 9.492537646922989460941385155021, 9.832588671207865702563175028514, 10.98159554784362422401248329837, 11.32600843163379472079279165960, 12.14663262218137303556212539135, 12.76376272715006114510808486289, 14.30587599613203452273981982122, 14.57160202439533757262151841499

Graph of the ZZ-function along the critical line